Mercurial > hg > smallbox
diff examples/Image Denoising/SMALL_ImgDenoise_DL_test_KSVDvsTwoStepKSVD.m @ 153:af307f247ac7 ivand_dev
Example scripts for Two Step Dictionary Learning - Image Denoising experiments.
author | Ivan Damnjanovic lnx <ivan.damnjanovic@eecs.qmul.ac.uk> |
---|---|
date | Fri, 29 Jul 2011 12:35:52 +0100 |
parents | |
children | f42aa8bcb82f |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/examples/Image Denoising/SMALL_ImgDenoise_DL_test_KSVDvsTwoStepKSVD.m Fri Jul 29 12:35:52 2011 +0100 @@ -0,0 +1,202 @@ +%% Dictionary Learning for Image Denoising - KSVD vs Recursive Least Squares +% +% This file contains an example of how SMALLbox can be used to test different +% dictionary learning techniques in Image Denoising problem. +% It calls generateImageDenoiseProblem that will let you to choose image, +% add noise and use noisy image to generate training set for dictionary +% learning. +% Two dictionary learning techniques were compared: +% - KSVD - M. Elad, R. Rubinstein, and M. Zibulevsky, "Efficient +% Implementation of the K-SVD Algorithm using Batch Orthogonal +% Matching Pursuit", Technical Report - CS, Technion, April 2008. +% - RLS-DLA - Skretting, K.; Engan, K.; , "Recursive Least Squares +% Dictionary Learning Algorithm," Signal Processing, IEEE Transactions on, +% vol.58, no.4, pp.2121-2130, April 2010 +% + + +% Centre for Digital Music, Queen Mary, University of London. +% This file copyright 2011 Ivan Damnjanovic. +% +% This program is free software; you can redistribute it and/or +% modify it under the terms of the GNU General Public License as +% published by the Free Software Foundation; either version 2 of the +% License, or (at your option) any later version. See the file +% COPYING included with this distribution for more information. +% +%% + + + +% If you want to load the image outside of generateImageDenoiseProblem +% function uncomment following lines. This can be useful if you want to +% denoise more then one image for example. +% Here we are loading test_image.mat that contains structure with 5 images : lena, +% barbara,boat, house and peppers. +clear; +TMPpath=pwd; +FS=filesep; +[pathstr1, name, ext, versn] = fileparts(which('SMALLboxSetup.m')); +cd([pathstr1,FS,'data',FS,'images']); +load('test_image.mat'); +cd(TMPpath); + +% Deffining the noise levels that we want to test + +noise_level=[10 20 25 50 100]; + +% Here we loop through different noise levels and images + +for noise_ind=1:1 +for im_num=1:1 + +% Defining Image Denoising Problem as Dictionary Learning +% Problem. As an input we set the number of training patches. + +SMALL.Problem = generateImageDenoiseProblem(test_image(im_num).i, 40000, '',256, noise_level(noise_ind)); +SMALL.Problem.name=int2str(im_num); + +Edata=sqrt(prod(SMALL.Problem.blocksize)) * SMALL.Problem.sigma * SMALL.Problem.gain; +maxatoms = floor(prod(SMALL.Problem.blocksize)/2); + +% results structure is to store all results + +results(noise_ind,im_num).noisy_psnr=SMALL.Problem.noisy_psnr; + +%% +% Use KSVD Dictionary Learning Algorithm to Learn overcomplete dictionary +% Ron Rubinstein implementation + +% Initialising Dictionary structure +% Setting Dictionary structure fields (toolbox, name, param, D and time) +% to zero values + +SMALL.DL(1)=SMALL_init_DL(); + +% Defining the parameters needed for dictionary learning + +SMALL.DL(1).toolbox = 'KSVD'; +SMALL.DL(1).name = 'ksvd'; + +% Defining the parameters for KSVD +% In this example we are learning 256 atoms in 20 iterations, so that +% every patch in the training set can be represented with target error in +% L2-norm (Edata) +% Type help ksvd in MATLAB prompt for more options. + + +SMALL.DL(1).param=struct(... + 'Edata', Edata,... + 'initdict', SMALL.Problem.initdict,... + 'dictsize', SMALL.Problem.p,... + 'exact', 1, ... + 'iternum', 20,... + 'memusage', 'high'); + +% Learn the dictionary + +SMALL.DL(1) = SMALL_learn(SMALL.Problem, SMALL.DL(1)); + +% Set SMALL.Problem.A dictionary +% (backward compatiblity with SPARCO: solver structure communicate +% only with Problem structure, ie no direct communication between DL and +% solver structures) + +SMALL.Problem.A = SMALL.DL(1).D; +SMALL.Problem.reconstruct = @(x) ImgDenoise_reconstruct(x, SMALL.Problem); + +%% +% Initialising solver structure +% Setting solver structure fields (toolbox, name, param, solution, +% reconstructed and time) to zero values + +SMALL.solver(1)=SMALL_init_solver; + +% Defining the parameters needed for image denoising + +SMALL.solver(1).toolbox='ompbox'; +SMALL.solver(1).name='omp2'; +SMALL.solver(1).param=struct(... + 'epsilon',Edata,... + 'maxatoms', maxatoms); + +% Denoising the image - find the sparse solution in the learned +% dictionary for all patches in the image and the end it uses +% reconstruction function to reconstruct the patches and put them into a +% denoised image + +SMALL.solver(1)=SMALL_solve(SMALL.Problem, SMALL.solver(1)); + +% Show PSNR after reconstruction + +SMALL.solver(1).reconstructed.psnr + +%% +% Use KSVD Dictionary Learning Algorithm to Learn overcomplete dictionary +% Boris Mailhe ksvd update implentation omp is the same as with Rubinstein +% implementation + + +% Initialising solver structure +% Setting solver structure fields (toolbox, name, param, solution, +% reconstructed and time) to zero values + +SMALL.solver(2)=SMALL_init_solver; + +% Defining the parameters needed for image denoising + +SMALL.solver(2).toolbox='ompbox'; +SMALL.solver(2).name='omp2'; +SMALL.solver(2).param=struct(... + 'epsilon',Edata,... + 'maxatoms', maxatoms); + +% Initialising Dictionary structure +% Setting Dictionary structure fields (toolbox, name, param, D and time) +% to zero values + +SMALL.DL(2)=SMALL_init_DL('TwoStepDL', 'KSVD', '', 1); + + +% Defining the parameters for KSVD +% In this example we are learning 256 atoms in 20 iterations, so that +% every patch in the training set can be represented with target error in +% L2-norm (EData) +% Type help ksvd in MATLAB prompt for more options. + + +SMALL.DL(2).param=struct(... + 'solver', SMALL.solver(2),... + 'initdict', SMALL.Problem.initdict,... + 'dictsize', SMALL.Problem.p,... + 'iternum', 20,... + 'show_dict', 1); + +% Learn the dictionary + +SMALL.DL(2) = SMALL_learn(SMALL.Problem, SMALL.DL(2)); + +% Set SMALL.Problem.A dictionary +% (backward compatiblity with SPARCO: solver structure communicate +% only with Problem structure, ie no direct communication between DL and +% solver structures) + +SMALL.Problem.A = SMALL.DL(2).D; +SMALL.Problem.reconstruct = @(x) ImgDenoise_reconstruct(x, SMALL.Problem); + +% Denoising the image - find the sparse solution in the learned +% dictionary for all patches in the image and the end it uses +% reconstruction function to reconstruct the patches and put them into a +% denoised image + +SMALL.solver(2)=SMALL_solve(SMALL.Problem, SMALL.solver(2)); + + +%% show results %% + +SMALL_ImgDeNoiseResult(SMALL); + +clear SMALL; +end +end +