Mercurial > hg > smallbox
diff DL/RLS-DLA/SolveFISTA.m @ 60:ad36f80e2ccf
(none)
author | idamnjanovic |
---|---|
date | Tue, 15 Mar 2011 12:20:59 +0000 |
parents | 6416fc12f2b8 |
children |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/DL/RLS-DLA/SolveFISTA.m Tue Mar 15 12:20:59 2011 +0000 @@ -0,0 +1,211 @@ +% Copyright ©2010. The Regents of the University of California (Regents). +% All Rights Reserved. Contact The Office of Technology Licensing, +% UC Berkeley, 2150 Shattuck Avenue, Suite 510, Berkeley, CA 94720-1620, +% (510) 643-7201, for commercial licensing opportunities. + +% Authors: Arvind Ganesh, Allen Y. Yang, Zihan Zhou. +% Contact: Allen Y. Yang, Department of EECS, University of California, +% Berkeley. <yang@eecs.berkeley.edu> + +% IN NO EVENT SHALL REGENTS BE LIABLE TO ANY PARTY FOR DIRECT, INDIRECT, +% SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES, INCLUDING LOST PROFITS, +% ARISING OUT OF THE USE OF THIS SOFTWARE AND ITS DOCUMENTATION, EVEN IF +% REGENTS HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + +% REGENTS SPECIFICALLY DISCLAIMS ANY WARRANTIES, INCLUDING, BUT NOT LIMITED +% TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A +% PARTICULAR PURPOSE. THE SOFTWARE AND ACCOMPANYING DOCUMENTATION, IF ANY, +% PROVIDED HEREUNDER IS PROVIDED "AS IS". REGENTS HAS NO OBLIGATION TO +% PROVIDE MAINTENANCE, SUPPORT, UPDATES, ENHANCEMENTS, OR MODIFICATIONS. + +%% This function is modified from Matlab code proximal_gradient_bp + +function [x_hat,nIter] = SolveFISTA(A,b, varargin) + +% b - m x 1 vector of observations/data (required input) +% A - m x n measurement matrix (required input) +% +% tol - tolerance for stopping criterion. +% - DEFAULT 1e-7 if omitted or -1. +% maxIter - maxilambdam number of iterations +% - DEFAULT 10000, if omitted or -1. +% lineSearchFlag - 1 if line search is to be done every iteration +% - DEFAULT 0, if omitted or -1. +% continuationFlag - 1 if a continuation is to be done on the parameter lambda +% - DEFAULT 1, if omitted or -1. +% eta - line search parameter, should be in (0,1) +% - ignored if lineSearchFlag is 0. +% - DEFAULT 0.9, if omitted or -1. +% lambda - relaxation parameter +% - ignored if continuationFlag is 1. +% - DEFAULT 1e-3, if omitted or -1. +% outputFileName - Details of each iteration are dumped here, if provided. +% +% x_hat - estimate of coeeficient vector +% numIter - number of iterations until convergence +% +% +% References +% "Robust PCA: Exact Recovery of Corrupted Low-Rank Matrices via Convex Optimization", J. Wright et al., preprint 2009. +% "An Accelerated Proximal Gradient Algorithm for Nuclear Norm Regularized Least Squares problems", K.-C. Toh and S. Yun, preprint 2009. +% +% Arvind Ganesh, Summer 2009. Questions? abalasu2@illinois.edu + +DEBUG = 0 ; + +STOPPING_GROUND_TRUTH = -1; +STOPPING_DUALITY_GAP = 1; +STOPPING_SPARSE_SUPPORT = 2; +STOPPING_OBJECTIVE_VALUE = 3; +STOPPING_SUBGRADIENT = 4; +STOPPING_DEFAULT = STOPPING_SUBGRADIENT; + +stoppingCriterion = STOPPING_DEFAULT; +maxIter = 1000 ; +tolerance = 1e-3; +[m,n] = size(A) ; +x0 = zeros(n,1) ; +xG = []; + +%% Initializing optimization variables +t_k = 1 ; +t_km1 = 1 ; +L0 = 1 ; +G = A'*A ; +nIter = 0 ; +c = A'*b ; +lambda0 = 0.99*L0*norm(c,inf) ; +eta = 0.6 ; +lambda_bar = 1e-4*lambda0 ; +xk = zeros(n,1) ; +lambda = lambda0 ; +L = L0 ; +beta = 1.5 ; + +% Parse the optional inputs. +if (mod(length(varargin), 2) ~= 0 ), + error(['Extra Parameters passed to the function ''' mfilename ''' lambdast be passed in pairs.']); +end +parameterCount = length(varargin)/2; + +for parameterIndex = 1:parameterCount, + parameterName = varargin{parameterIndex*2 - 1}; + parameterValue = varargin{parameterIndex*2}; + switch lower(parameterName) + case 'stoppingcriterion' + stoppingCriterion = parameterValue; + case 'groundtruth' + xG = parameterValue; + case 'tolerance' + tolerance = parameterValue; + case 'linesearchflag' + lineSearchFlag = parameterValue; + case 'lambda' + lambda_bar = parameterValue; + case 'maxiteration' + maxIter = parameterValue; + case 'isnonnegative' + isNonnegative = parameterValue; + case 'continuationflag' + continuationFlag = parameterValue; + case 'initialization' + xk = parameterValue; + if ~all(size(xk)==[n,1]) + error('The dimension of the initial xk does not match.'); + end + case 'eta' + eta = parameterValue; + if ( eta <= 0 || eta >= 1 ) + disp('Line search parameter out of bounds, switching to default 0.9') ; + eta = 0.9 ; + end + otherwise + error(['The parameter ''' parameterName ''' is not recognized by the function ''' mfilename '''.']); + end +end +clear varargin + +if stoppingCriterion==STOPPING_GROUND_TRUTH && isempty(xG) + error('The stopping criterion must provide the ground truth value of x.'); +end + +keep_going = 1 ; +nz_x = (abs(xk)> eps*10); +f = 0.5*norm(b-A*xk)^2 + lambda_bar * norm(xk,1); +xkm1 = xk; +while keep_going && (nIter < maxIter) + nIter = nIter + 1 ; + + yk = xk + ((t_km1-1)/t_k)*(xk-xkm1) ; + + stop_backtrack = 0 ; + + temp = G*yk - c ; % gradient of f at yk + + while ~stop_backtrack + + gk = yk - (1/L)*temp ; + + xkp1 = soft(gk,lambda/L) ; + + temp1 = 0.5*norm(b-A*xkp1)^2 ; + temp2 = 0.5*norm(b-A*yk)^2 + (xkp1-yk)'*temp + (L/2)*norm(xkp1-yk)^2 ; + + if temp1 <= temp2 + stop_backtrack = 1 ; + else + L = L*beta ; + end + + end + + switch stoppingCriterion + case STOPPING_GROUND_TRUTH + keep_going = norm(xG-xkp1)>tolerance; + case STOPPING_SUBGRADIENT + sk = L*(yk-xkp1) + G*(xkp1-yk) ; + keep_going = norm(sk) > tolerance*L*max(1,norm(xkp1)); + case STOPPING_SPARSE_SUPPORT + % compute the stopping criterion based on the change + % of the number of non-zero components of the estimate + nz_x_prev = nz_x; + nz_x = (abs(xkp1)>eps*10); + num_nz_x = sum(nz_x(:)); + num_changes_active = (sum(nz_x(:)~=nz_x_prev(:))); + if num_nz_x >= 1 + criterionActiveSet = num_changes_active / num_nz_x; + keep_going = (criterionActiveSet > tolerance); + end + case STOPPING_OBJECTIVE_VALUE + % compute the stopping criterion based on the relative + % variation of the objective function. + prev_f = f; + f = 0.5*norm(b-A*xkp1)^2 + lambda_bar * norm(xk,1); + criterionObjective = abs(f-prev_f)/(prev_f); + keep_going = (criterionObjective > tolerance); + case STOPPING_DUALITY_GAP + error('Duality gap is not a valid stopping criterion for PGBP.'); + otherwise + error('Undefined stopping criterion.'); + end + + lambda = max(eta*lambda,lambda_bar) ; + + + t_kp1 = 0.5*(1+sqrt(1+4*t_k*t_k)) ; + + t_km1 = t_k ; + t_k = t_kp1 ; + xkm1 = xk ; + xk = xkp1 ; +end + +x_hat = xk ; + +function y = soft(x,T) +if sum(abs(T(:)))==0 + y = x; +else + y = max(abs(x) - T, 0); + y = sign(x).*y; +end