Mercurial > hg > smallbox
diff util/SMALL_learn.m @ 190:759313488e7b luisf_dev
Added two config files for the 2 step dic and learn scripts; removed 'extra' folder; created init script (initial version).
author | luisf <luis.figueira@eecs.qmul.ac.uk> |
---|---|
date | Tue, 13 Mar 2012 17:33:20 +0000 |
parents | b14209313ba4 |
children | d50f5bdbe14c |
line wrap: on
line diff
--- a/util/SMALL_learn.m Thu Feb 09 17:26:45 2012 +0000 +++ b/util/SMALL_learn.m Tue Mar 13 17:33:20 2012 +0000 @@ -23,88 +23,10 @@ end start=cputime; tStart=tic; - if strcmpi(DL.toolbox,'KSVD') - param=DL.param; - param.data=Problem.b; - - D = eval([DL.name,'(param)']);%, ''t'', 5);']); - elseif strcmpi(DL.toolbox,'KSVDS') - param=DL.param; - param.data=Problem.b; - D = eval([DL.name,'(param, ''t'', 5);']); - elseif strcmpi(DL.toolbox,'SPAMS') + % configuration file + run([SMALL_path 'config/SMALL_learn_config.m']); - X = Problem.b; - param=DL.param; - - D = eval([DL.name,'(X, param);']); - % As some versions of SPAMS does not produce unit norm column - % dictionaries, we need to make sure that columns are normalised to - % unit lenght. - - for i = 1: size(D,2) - D(:,i)=D(:,i)/norm(D(:,i)); - end - elseif strcmpi(DL.toolbox,'SMALL') - - X = Problem.b; - param=DL.param; - - D = eval([DL.name,'(X, param);']); - % we need to make sure that columns are normalised to - % unit lenght. - - for i = 1: size(D,2) - D(:,i)=D(:,i)/norm(D(:,i)); - end - - elseif strcmpi(DL.toolbox,'TwoStepDL') - - DL=SMALL_two_step_DL(Problem, DL); - - % we need to make sure that columns are normalised to - % unit lenght. - - for i = 1: size(DL.D,2) - DL.D(:,i)=DL.D(:,i)/norm(DL.D(:,i)); - end - D = DL.D; - -elseif strcmpi(DL.toolbox,'MMbox') - - DL = wrapper_mm_DL(Problem, DL); - - % we need to make sure that columns are normalised to - % unit lenght. - - for i = 1: size(DL.D,2) - DL.D(:,i)=DL.D(:,i)/norm(DL.D(:,i)); - end - D = DL.D; - -% To introduce new dictionary learning technique put the files in -% your Matlab path. Next, unique name <TolboxID> for your toolbox needs -% to be defined and also prefferd API for toolbox functions <Preffered_API> -% -% elseif strcmpi(DL.toolbox,'<ToolboxID>') -% % This is an example of API that can be used: -% % - get training set from Problem part of structure -% % - assign parameters defined in the main program -% -% X = Problem.b; -% param=DL.param; -% -% % - Evaluate the function (DL.name - defined in the main) with -% % parameters given above -% -% D = eval([DL.name,'(<Preffered_API>);']); - - else - printf('\nToolbox has not been registered. Please change SMALL_learn file.\n'); - return - end - %% % Dictionary Learning time tElapsed=toc(tStart);