Mercurial > hg > smallbox
diff Problems/Cardiac_MRI_problem.m @ 47:2953097411d4
(none)
author | idamnjanovic |
---|---|
date | Mon, 14 Mar 2011 15:43:24 +0000 |
parents | |
children |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/Problems/Cardiac_MRI_problem.m Mon Mar 14 15:43:24 2011 +0000 @@ -0,0 +1,155 @@ +function data = Cardiac_MRI_Problem(varargin) +% CHANGE!!!!PROB503 Shepp-Logan phantom, partial Fourier with sample mask, +% complex domain, total variation. +% +% PROB503 creates a problem structure. The generated signal will +% consist of a N = 256 by N Shepp-Logan phantom. The signal is +% sampled at random locations in frequency domain generated +% according to a probability density function. +% +% The following optional arguments are supported: +% +% PROB503('n',N,flags) is the same as above, but with a +% phantom of size N by N. The 'noseed' flag can be specified to +% suppress initialization of the random number generators. Both +% the parameter pair and flags can be omitted. +% +% Examples: +% P = prob503; % Creates the default 503 problem. +% +% References: +% +% [LustDonoPaul:2007] M. Lustig, D.L. Donoho and J.M. Pauly, +% Sparse MRI: The application of compressed sensing for rapid MR +% imaging, Submitted to Magnetic Resonance in Medicine, 2007. +% +% [sparsemri] M. Lustig, SparseMRI, +% http://www.stanford.edu/~mlustig/SparseMRI.html +% +% See also GENERATEPROBLEM. +% +%MATLAB SPARCO Toolbox. + +% Copyright 2008, Ewout van den Berg and Michael P. Friedlander +% http://www.cs.ubc.ca/labs/scl/sparco +% $Id: prob503.m 1040 2008-06-26 20:29:02Z ewout78 $ + +% Parse parameters and set problem name + +[opts,varg] = parseDefaultOpts(varargin{:}); +[parm,varg] = parseOptions(varg,{'noseed'},{'n','fold','sigma','slice'}); +n = getOption(parm,'n',256); +info.name = 'Cardiac_MRI'; +opts.show = 1; + + +fold = getOption(parm,'fold', 6); % undersampling level +sigma = getOption(parm,'sigma', 0.05);; % noise level +z = getOption(parm,'slice', 5);; % slice number (1-10) +szt = 20; % number of time samples + +% Return problem name if requested +if opts.getname, data = info.name; return; end; + +% Initialize random number generators +if (~parm.noseed), randn('state',0); rand('twister',2000); end; + +% Set up the data +% if allowed use variable density +%pdf = genPDF([n,n],5,0.1,2,0.1,0); + + + +%load heart images +FS=filesep; +TMPpath=pwd; + [pathstr1, name, ext, versn] = fileparts(which('SMALLboxSetup.m')); + cd([pathstr1,FS,'data',FS,'images',FS,'Cardiac_MRI_dataset',FS,'Images']); + [filename,pathname] = uigetfile({'*.mat;'},'Select a patient MRI image set'); + [pathstr, name, ext, versn] = fileparts(filename); +load(filename); +data.name=name; +cd(TMPpath); + +% Set up the problem + +% Get 3D matrix of heart images (size 256x256, 20 frames) and stack them to +% 2D matrix (256 x 256*20) +data.signal = reshape(sol_yxzt(:,:,z,:), [n n*szt]); + +% make a noise matrix + +noise_var=sqrt(sigma*var(reshape(data.signal, [n*n*szt 1]))); +data.noise = randn(n,n*szt)*noise_var + sqrt(-1)*randn(n,n*szt)*noise_var; + +% make a mask of random lines in phase encode and time domain random - vector +% of 0 and 1 of size n*szt multiplied with vector of 1 of size n + +mask = rand(n*szt,1); +mask(mask>(1-1/fold))=1; +mask(mask<=(1-1/fold))=0; +mask=(mask*ones(1,n))'; +data.op.mask = opMask(mask); +data.op.padding = opPadding([n,n*szt],[n,n*szt]); + +% make an fft 2D dictionary. It will do 2D fft on evry image in the stack +data.op.fft2d = opKron(opDiag(szt,1), opFFT2C(n,n)); + +% make measurement operator mask*padding*fft2d +data.M = opFoG(data.op.mask, data.op.padding, ... + data.op.fft2d); + +% make a mesurement vector b = M* (signal + noise) where s+n is stack to 1d vector +data.b = data.M(reshape(data.signal + data.noise,[n*n*szt,1]),1); + + +data = completeOps(data); + +% Additional information +info.title = 'Cardiac-MRI'; +info.thumb = 'figcardiacProblem'; +info.citations = {'LustDonoPaul:2007','sparsemri'}; +info.fig{1}.title = 'Cardiac MRI'; +% info.fig{1}.filename = 'figProblemCardiac'; +% info.fig{2}.title = 'Probability density function'; +% info.fig{2}.filename = 'figProblem503PDF'; +% info.fig{3}.title = 'Sampling mask'; +% info.fig{3}.filename = 'figProblem503Mask'; + +% Set the info field in data +data.info = info; +opts.figinc=1; +% Plot figures +if opts.update || opts.show + + %figure(opts.figno); opts.figno = opts.figno + opts.figinc; + + mov=reshape(data.signal/500, [n n szt]); + + implay(mov); + clear mov; + + %updateFigure(opts, info.fig{1}.title, info.fig{1}.filename); + + movMeas=reshape(abs(data.A(data.b,2))/500, [n n szt]); + implay(movMeas); + clear movMeas; +% figure(opts.figno); opts.figno = opts.figno + opts.figinc; +% imagesc(pdf), colormap gray; +% updateFigure(opts, info.fig{2}.title, info.fig{2}.filename) + + implay(reshape(mask, [n n szt])); + +% figure(opts.figno); opts.figno = opts.figno + opts.figinc; +% imagesc(mask), colormap gray +% updateFigure(opts, info.fig{3}.title, info.fig{3}.filename) +% +% if opts.update +% mn = min(min(data.signal + real(data.noise))); +% mx = max(max(data.signal + real(data.noise))); +% P = (data.signal + real(data.noise) - mn) / (mx - mn); +% P = scaleImage(P,128,128); +% P = P(1:2:end,1:2:end,:); +% thumbwrite(P, info.thumb, opts); +% end +end