Mercurial > hg > smallbox
diff toolboxes/alps/ALPS/l_ALPS.m @ 159:23763c5fbda5 danieleb
Merge
author | Daniele Barchiesi <daniele.barchiesi@eecs.qmul.ac.uk> |
---|---|
date | Wed, 31 Aug 2011 10:43:32 +0100 |
parents | 0de08f68256b |
children |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/toolboxes/alps/ALPS/l_ALPS.m Wed Aug 31 10:43:32 2011 +0100 @@ -0,0 +1,267 @@ +function [x_hat, numiter, x_path] = l_ALPS(y, Phi, K, params) +% ========================================================================= +% l-ALPS(#) algorithm - Beta Version +% ========================================================================= +% Algebraic Pursuit (ALPS) algorithm with l-memory acceleration. +% +% Detailed discussion on the algorithm can be found in section III in +% [1] "On Accelerated Hard Thresholding Methods for Sparse Approximation", written +% by Volkan Cevher, Technical Report, 2011. +% ========================================================================= +% INPUT ARGUMENTS: +% y M x 1 undersampled measurement vector. +% Phi M x N regression matrix. +% K Sparsity of underlying vector x* or desired +% sparsity of solution. +% params Structure of parameters. These are: +% +% tol,... Early stopping tolerance. Default value: tol = +% 1-e5 +% ALPSiters,... Maximum number of algorithm iterations. Default +% value: 300. +% solveNewtonb,... If solveNewtonb == 1: Corresponds to solving a +% Newton system restricted to a sparse support. +% It is implemented via conjugate gradients. +% If solveNewtonb == 0: Step size selection as described +% in eqs. (12) and (13) in [1]. +% Default value: solveNewtonb = 0. +% gradientDescentx,... If gradientDescentx == 1: single gradient +% update of x_{i+1} restricted ot its support with +% line search. Default value: gradientDescentx = +% 1. +% solveNewtonx,... If solveNewtonx == 1: Akin to Hard Thresholding Pursuit +% (c.f. Simon Foucart, "Hard Thresholding Pursuit," +% preprint, 2010). Default vale: solveNewtonx = 0 +% tau,... Variable that controls the momentum in +% non-memoryless case. Ignored in memoryless +% case. Default value: tau = 1/2. +% Special cases: +% - tau = -1: momentum step size is automatically +% optimized in every step. +% - tau as a function handle: user defined +% behavior of tau momentum term. +% mu,... Variable that controls the step size selection. +% When mu = 0, step size is computed adaptively +% per iteration. Default value: mu = 0. +% cg_maxiter,... Maximum iterations for Conjugate-Gradients method. +% cg_tol Tolerance variable for Conjugate-Gradients method. +% ========================================================================= +% OUTPUT ARGUMENTS: +% x_hat N x 1 recovered K-sparse vector. +% numiter Number of iterations executed. +% x_path Keeps a series of computed N x 1 K-sparse vectors +% until the end of the iterative process. +% ========================================================================= +% 01/04/2011, by Anastasios Kyrillidis. anastasios.kyrillidis@epfl.ch, EPFL. +% ========================================================================= +% cgsolve.m is written by Justin Romberg, Caltech, Oct. 2005. +% Email: jrom@acm.caltech.edu +% ========================================================================= +% This work was supported in part by the European Commission under Grant +% MIRG-268398 and DARPA KeCoM program #11-DARPA-1055. VC also would like +% to acknowledge Rice University for his Faculty Fellowship. +% ========================================================================= + +[M, N] = size(Phi); + +%% Initialize transpose of measurement matrix + +Phi_t = Phi'; + +%% Initialize to zero vector +y_cur = zeros(N,1); +Y_i = []; + +x_path = zeros(N, params.ALPSiters); + +%% CG params +if (params.solveNewtonx == 1 || params.solveNewtonb == 1) + cg_verbose = 0; + cg_A = Phi_t*Phi; + cg_b = Phi_t*y; +end; + +%% Determine momentum step size selection strategy +optimizeTau = 0; +function_tau = 0; + +if (isa(params.tau,'float')) + if (params.tau == -1) + optimizeTau = 1; + end; +elseif (isa(params.tau, 'function_handle')) + function_tau = 1; +end; + +%% Determine step size selection strategy +function_mu = 0; +adaptive_mu = 0; + +if (isa(params.mu,'float')) + function_mu = 0; + if (params.mu == 0) + adaptive_mu = 1; + else + adaptive_mu = 0; + end; +elseif (isa(params.mu,'function_handle')) + function_mu = 1; +end; + +%% Help variables +complementary_Yi = ones(N,1); +x = zeros(N,params.memory + 1); +Phi_x = zeros(M,params.memory + 1); +tau_candidates = zeros(params.memory,1); +y_candidates = zeros(N,params.memory); +residual_energy = zeros(params.memory,1); + +i = 1; +%% l-ALPS(#) +while (i <= params.ALPSiters) + x_path(:,i) = x(:,end); + + for k = 1:params.memory + x(:,k) = x(:,k+1); + Phi_x(:,k) = Phi_x(:,k+1); + end; + + % Compute the residual + if (i == 1) + res = y; + else + Phi_y_cur = Phi(:,Y_i)*y_cur(Y_i); + res = y - Phi_y_cur; + end; + + % Compute the derivative + der = Phi_t*res; + + % Determine S_i via eq. (11) (change of variable from x_i to y_i) + complementary_Yi(Y_i) = 0; + [tmpArg, ind_der] = sort(abs(der).*complementary_Yi, 'descend'); + complementary_Yi(Y_i) = 1; + S_i = [Y_i; ind_der(1:K)]; + + ider = der(S_i); + if (params.solveNewtonb == 1) + % Compute least squares solution of the system A*y = (A*A)x using CG + if (params.useCG == 1) + [b, tmpArg, tmpArg] = cgsolve(cg_A(S_i, S_i), cg_b(S_i), params.cg_tol, params.cg_maxiter, cg_verbose); + else + b = cg_A(S_i,S_i)\cg_b(S_i); + end; + else + % Step size selection via eq. (12) and eq. (13) (change of variable from x_i to y_i) + if (adaptive_mu) + Pder = Phi(:,S_i)*ider; + mu_bar = ider'*ider/(Pder'*Pder); + b = y_cur(S_i) + mu_bar*ider; + elseif (function_mu) + b = y_cur(S_i) + params.mu(i)*ider; + else b = y_cur(S_i) + params.mu*ider; + end; + end; + + % Hard-threshold b and compute X_{i+1} + [tmpArg, ind_b] = sort(abs(b), 'descend'); + x(:,end) = zeros(N,1); + x(S_i(ind_b(1:K)),end) = b(ind_b(1:K)); + X_i = S_i(ind_b(1:K)); + + if (params.gradientDescentx == 1) + % Calculate gradient of estimated current x vector + Phi_x_cur = Phi(:,X_i)*x(X_i,end); + res = y - Phi_x_cur; + der = Phi_t*res; + ider = der(X_i); + + if (adaptive_mu) + Pder = Phi(:,X_i)*ider; + mu_bar = ider'*ider/(Pder'*Pder); + x(X_i,end) = x(X_i,end) + mu_bar*ider; + elseif (function_mu) + x(X_i,end) = x(X_i,end) + params.mu(i)*ider; + else x(X_i,end) = x(X_i,end) + params.mu*ider; + end; + elseif (params.solveNewtonx == 1) + % Similar to HTP + if (params.useCG == 1) + [v, tmpArg, tmpArg] = cgsolve(cg_A(X_i, X_i), cg_b(X_i), params.cg_tol, params.cg_maxiter, cg_verbose); + else + v = cg_A(X_i, X_i)\cg_b(X_i); + end; + x(X_i,end) = v; + end; + + Phi_x(:,end) = Phi(:,X_i)*x(X_i,end); + res = y - Phi_x(:,end); + if (~function_tau) % If tau is not a function handle... + if (optimizeTau) % Compute optimized tau + if (i > params.memory) + + % tau = argmin ||u - Phi*y_{i+1}|| + % = <res, Phi*(x_cur - x_prev)>/||Phi*(x_cur - x_prev)||^2 + + for k = 1:params.memory + Phi_diff = Phi_x(:,end) - Phi_x(:,k); + tau_candidates(k) = res'*Phi_diff/(Phi_diff'*Phi_diff); + y_candidates(:,k) = x(:,end) + tau_candidates(k)*(x(:,end) - x(:,k)); + residual_energy(k) = norm(y - Phi*y_candidates(:,k)); + end; + + [tmpArg,min_ind] = min(residual_energy); + y_cur = y_candidates(:,min_ind); + Y_i = find(ne(y_cur,0)); + else + Phi_diff = Phi_x(:,end) - Phi_x(:,end-1); + params.tau = res'*Phi_diff/(Phi_diff'*Phi_diff); + y_cur = x(:,end) + params.tau*(x(:,end) - x(:,end-1)); + Y_i = find(ne(y_cur,0)); + end; + else + if (i > params.memory) + for k = 1:params.memory + y_candidates(:,k) = x(:,end) + params.tau*(x(:,end) - x(:,k)); + residual_energy(k) = norm(y - Phi*y_candidates(:,k)); + end; + + [tmpArg,min_ind] = min(residual_energy); + y_cur = y_candidates(:,min_ind); + Y_i = find(ne(y_cur,0)); + else + y_cur = x(:,end) + params.tau*(x(:,end) - x(:,end-1)); + Y_i = find(ne(y_cur,0)); + end; + end; + else + if (i > params.memory) + for k = 1:params.memory + y_candidates(:,k) = x(:,end) + params.tau(i)*(x(:,end) - x(:,k)); + residual_energy(k) = norm(y - Phi*y_candidates(:,k))^2; + end; + + [tmpArg,min_ind] = min(residual_energy); + y_cur = y_candidates(:,min_ind); + Y_i = find(ne(y_cur,0)); + else + y_cur = x(:,end) + params.tau(i)*(x(:,end) - x(:,end-1)); + Y_i = find(ne(y_cur,0)); + end; + end; + + % Test stopping criterion + if (i > 1) && (norm(x(:,end) - x(:,end-1)) < params.tol*norm(x(:,end))) + break; + end; + i = i + 1; +end; + +x_hat = x(:,end); +numiter = i; + +if (i > params.ALPSiters) + x_path = x_path(:,1:numiter-1); +else + x_path = x_path(:,1:numiter); +end;