Mercurial > hg > smallbox
comparison examples/Image Denoising/SMALL_ImgDenoise_DL_test_Training_size.m @ 6:f72603404233
(none)
author | idamnjanovic |
---|---|
date | Mon, 22 Mar 2010 10:45:01 +0000 |
parents | |
children | 79e1d62f0115 |
comparison
equal
deleted
inserted
replaced
5:f44689e95ea4 | 6:f72603404233 |
---|---|
1 %% DICTIONARY LEARNING FOR IMAGE DENOISING | |
2 % This file contains an example of how SMALLbox can be used to test different | |
3 % dictionary learning techniques in Image Denoising problem. | |
4 % It calls generateImageDenoiseProblem that will let you to choose image, | |
5 % add noise and use noisy image to generate training set for dictionary | |
6 % learning. | |
7 % We tested time and psnr for two dictionary learning techniques. This | |
8 % example does not represnt any extensive testing. The aim of this | |
9 % example is just to show how SMALL structure can be used for testing. | |
10 % | |
11 % Two dictionary learning techniques were compared: | |
12 % - KSVD - M. Elad, R. Rubinstein, and M. Zibulevsky, "Efficient | |
13 % Implementation of the K-SVD Algorithm using Batch Orthogonal | |
14 % Matching Pursuit", Technical Report - CS, Technion, April 2008. | |
15 % - SPAMS - J. Mairal, F. Bach, J. Ponce and G. Sapiro. Online | |
16 % Dictionary Learning for Sparse Coding. International | |
17 % Conference on Machine Learning,Montreal, Canada, 2009 | |
18 % | |
19 % | |
20 % Ivan Damnjanovic 2010 | |
21 %% | |
22 | |
23 clear all; | |
24 | |
25 %% Load an image | |
26 TMPpath=pwd; | |
27 FS=filesep; | |
28 [pathstr1, name, ext, versn] = fileparts(which('SMALLboxSetup.m')); | |
29 cd([pathstr1,FS,'data',FS,'images']); | |
30 [filename,pathname] = uigetfile({'*.png;'},'Select a file containin pre-calculated notes'); | |
31 [pathstr, name, ext, versn] = fileparts(filename); | |
32 test_image = imread(filename); | |
33 test_image = double(test_image); | |
34 cd(TMPpath); | |
35 | |
36 % number of different values we want to test | |
37 n =5; | |
38 step = floor((size(test_image,1)-8+1)*(size(test_image,2)-8+1)/n); | |
39 Training_size=zeros(1,n); | |
40 time = zeros(2,n); | |
41 psnr = zeros(2,n); | |
42 for i=1:n | |
43 | |
44 % Here we want to test time spent and quality of denoising for | |
45 % different sizes of training sample. | |
46 Training_size(i)=i*step; | |
47 | |
48 SMALL.Problem = generateImageDenoiseProblem(test_image,Training_size(i)); | |
49 SMALL.Problem.name=name; | |
50 %% | |
51 % Use KSVD Dictionary Learning Algorithm to Learn overcomplete dictionary | |
52 | |
53 % Initialising Dictionary structure | |
54 % Setting Dictionary structure fields (toolbox, name, param, D and time) | |
55 % to zero values | |
56 | |
57 SMALL.DL(1)=SMALL_init_DL(); | |
58 | |
59 % Defining the parameters needed for dictionary learning | |
60 | |
61 SMALL.DL(1).toolbox = 'KSVD'; | |
62 SMALL.DL(1).name = 'ksvd'; | |
63 | |
64 % Defining the parameters for KSVD | |
65 % In this example we are learning 256 atoms in 20 iterations, so that | |
66 % every patch in the training set can be represented with target error in | |
67 % L2-norm (EData) | |
68 % Type help ksvd in MATLAB prompt for more options. | |
69 | |
70 Edata=sqrt(prod(SMALL.Problem.blocksize)) * SMALL.Problem.sigma * SMALL.Problem.gain; | |
71 SMALL.DL(1).param=struct(... | |
72 'Edata', Edata,... | |
73 'initdict', SMALL.Problem.initdict,... | |
74 'dictsize', SMALL.Problem.p,... | |
75 'iternum', 20,... | |
76 'memusage', 'high'); | |
77 | |
78 % Learn the dictionary | |
79 | |
80 SMALL.DL(1) = SMALL_learn(SMALL.Problem, SMALL.DL(1)); | |
81 | |
82 % Set SMALL.Problem.A dictionary | |
83 % (backward compatiblity with SPARCO: solver structure communicate | |
84 % only with Problem structure, ie no direct communication between DL and | |
85 % solver structures) | |
86 | |
87 SMALL.Problem.A = SMALL.DL(1).D; | |
88 | |
89 | |
90 %% | |
91 % Initialising solver structure | |
92 % Setting solver structure fields (toolbox, name, param, solution, | |
93 % reconstructed and time) to zero values | |
94 | |
95 | |
96 SMALL.solver(1)=SMALL_init_solver; | |
97 | |
98 % Defining the parameters needed for denoising | |
99 | |
100 SMALL.solver(1).toolbox='ompbox'; | |
101 SMALL.solver(1).name='ompdenoise'; | |
102 | |
103 % Denoising the image - SMALL_denoise function is similar to SMALL_solve, | |
104 % but backward compatible with KSVD definition of denoising | |
105 | |
106 SMALL.solver(1)=SMALL_denoise(SMALL.Problem, SMALL.solver(1)); | |
107 | |
108 %% | |
109 % Use SPAMS Online Dictionary Learning Algorithm | |
110 % to Learn overcomplete dictionary (Julien Mairal 2009) | |
111 % (If you have not installed SPAMS please comment the following two cells) | |
112 | |
113 % Initialising Dictionary structure | |
114 % Setting Dictionary structure fields (toolbox, name, param, D and time) | |
115 % to zero values | |
116 | |
117 SMALL.DL(2)=SMALL_init_DL(); | |
118 | |
119 % Defining fields needed for dictionary learning | |
120 | |
121 SMALL.DL(2).toolbox = 'SPAMS'; | |
122 SMALL.DL(2).name = 'mexTrainDL'; | |
123 | |
124 % Type 'help mexTrainDL in MATLAB prompt for explanation of parameters. | |
125 | |
126 SMALL.DL(2).param=struct(... | |
127 'D', SMALL.Problem.initdict,... | |
128 'K', SMALL.Problem.p,... | |
129 'lambda', 2,... | |
130 'iter', 300,... | |
131 'mode', 3,... | |
132 'modeD', 0 ); | |
133 | |
134 % Learn the dictionary | |
135 | |
136 SMALL.DL(2) = SMALL_learn(SMALL.Problem, SMALL.DL(2)); | |
137 | |
138 % Set SMALL.Problem.A dictionary | |
139 % (backward compatiblity with SPARCO: solver structure communicate | |
140 % only with Problem structure, ie no direct communication between DL and | |
141 % solver structures) | |
142 | |
143 SMALL.Problem.A = SMALL.DL(2).D; | |
144 | |
145 | |
146 %% | |
147 % Initialising solver structure | |
148 % Setting solver structure fields (toolbox, name, param, solution, | |
149 % reconstructed and time) to zero values | |
150 | |
151 SMALL.solver(2)=SMALL_init_solver; | |
152 | |
153 % Defining the parameters needed for denoising | |
154 | |
155 SMALL.solver(2).toolbox='ompbox'; | |
156 SMALL.solver(2).name='ompdenoise'; | |
157 | |
158 % Denoising the image - SMALL_denoise function is similar to SMALL_solve, | |
159 % but backward compatible with KSVD definition of denoising | |
160 | |
161 SMALL.solver(2)=SMALL_denoise(SMALL.Problem, SMALL.solver(2)); | |
162 | |
163 | |
164 | |
165 %% show results %% | |
166 % This will show denoised images and dictionaries for all training sets. | |
167 % If you are not interested to see them and do not want clutter your | |
168 % screen comment following line | |
169 | |
170 SMALL_ImgDeNoiseResult(SMALL); | |
171 | |
172 time(1,i) = SMALL.DL(1).time; | |
173 psnr(1,i) = SMALL.solver(1).reconstructed.psnr; | |
174 | |
175 time(2,i) = SMALL.DL(2).time; | |
176 psnr(2,i) = SMALL.solver(2).reconstructed.psnr; | |
177 | |
178 clear SMALL | |
179 end | |
180 | |
181 %% show time and psnr %% | |
182 figure('Name', 'KSVD vs SPAMS'); | |
183 | |
184 subplot(1,2,1); plot(Training_size, time(1,:), 'ro-', Training_size, time(2,:), 'b*-'); | |
185 legend('KSVD','SPAMS',0); | |
186 title('Time vs Training size'); | |
187 subplot(1,2,2); plot(Training_size, psnr(1,:), 'ro-', Training_size, psnr(2,:), 'b*-'); | |
188 legend('KSVD','SPAMS',0); | |
189 title('PSNR vs Training size'); |