Mercurial > hg > smallbox
comparison examples/Image Denoising/SMALL_ImgDenoise_DL_test_KSVDvsSPAMS.m @ 6:f72603404233
(none)
author | idamnjanovic |
---|---|
date | Mon, 22 Mar 2010 10:45:01 +0000 |
parents | |
children | cd55209c69e1 |
comparison
equal
deleted
inserted
replaced
5:f44689e95ea4 | 6:f72603404233 |
---|---|
1 %% DICTIONARY LEARNING FOR IMAGE DENOISING | |
2 % This file contains an example of how SMALLbox can be used to test different | |
3 % dictionary learning techniques in Image Denoising problem. | |
4 % It calls generateImageDenoiseProblem that will let you to choose image, | |
5 % add noise and use noisy image to generate training set for dictionary | |
6 % learning. | |
7 % Three dictionary learning techniques were compared: | |
8 % - KSVD - M. Elad, R. Rubinstein, and M. Zibulevsky, "Efficient | |
9 % Implementation of the K-SVD Algorithm using Batch Orthogonal | |
10 % Matching Pursuit", Technical Report - CS, Technion, April 2008. | |
11 % - KSVDS - R. Rubinstein, M. Zibulevsky, and M. Elad, "Learning Sparse | |
12 % Dictionaries for Sparse Signal Approximation", Technical | |
13 % Report - CS, Technion, June 2009. | |
14 % - SPAMS - J. Mairal, F. Bach, J. Ponce and G. Sapiro. Online | |
15 % Dictionary Learning for Sparse Coding. International | |
16 % Conference on Machine Learning,Montreal, Canada, 2009 | |
17 % | |
18 % | |
19 % Ivan Damnjanovic 2010 | |
20 %% | |
21 | |
22 clear; | |
23 | |
24 % If you want to load the image outside of generateImageDenoiseProblem | |
25 % function uncomment following lines. This can be useful if you want to | |
26 % denoise more then one image for example. | |
27 | |
28 % TMPpath=pwd; | |
29 % FS=filesep; | |
30 % [pathstr1, name, ext, versn] = fileparts(which('SMALLboxSetup.m')); | |
31 % cd([pathstr1,FS,'data',FS,'images']); | |
32 % [filename,pathname] = uigetfile({'*.png;'},'Select a file containin pre-calculated notes'); | |
33 % [pathstr, name, ext, versn] = fileparts(filename); | |
34 % test_image = imread(filename); | |
35 % test_image = double(test_image); | |
36 % cd(TMPpath); | |
37 % SMALL.Problem.name=name; | |
38 | |
39 | |
40 % Defining Image Denoising Problem as Dictionary Learning | |
41 % Problem. As an input we set the number of training patches. | |
42 | |
43 SMALL.Problem = generateImageDenoiseProblem('', 40000); | |
44 | |
45 | |
46 %% | |
47 % Use KSVD Dictionary Learning Algorithm to Learn overcomplete dictionary | |
48 | |
49 % Initialising Dictionary structure | |
50 % Setting Dictionary structure fields (toolbox, name, param, D and time) | |
51 % to zero values | |
52 | |
53 SMALL.DL(1)=SMALL_init_DL(); | |
54 | |
55 % Defining the parameters needed for dictionary learning | |
56 | |
57 SMALL.DL(1).toolbox = 'KSVD'; | |
58 SMALL.DL(1).name = 'ksvd'; | |
59 | |
60 % Defining the parameters for KSVD | |
61 % In this example we are learning 256 atoms in 20 iterations, so that | |
62 % every patch in the training set can be represented with target error in | |
63 % L2-norm (EData) | |
64 % Type help ksvd in MATLAB prompt for more options. | |
65 | |
66 Edata=sqrt(prod(SMALL.Problem.blocksize)) * SMALL.Problem.sigma * SMALL.Problem.gain; | |
67 SMALL.DL(1).param=struct(... | |
68 'Edata', Edata,... | |
69 'initdict', SMALL.Problem.initdict,... | |
70 'dictsize', SMALL.Problem.p,... | |
71 'iternum', 20,... | |
72 'memusage', 'high'); | |
73 | |
74 % Learn the dictionary | |
75 | |
76 SMALL.DL(1) = SMALL_learn(SMALL.Problem, SMALL.DL(1)); | |
77 | |
78 % Set SMALL.Problem.A dictionary | |
79 % (backward compatiblity with SPARCO: solver structure communicate | |
80 % only with Problem structure, ie no direct communication between DL and | |
81 % solver structures) | |
82 | |
83 SMALL.Problem.A = SMALL.DL(1).D; | |
84 | |
85 | |
86 %% | |
87 % Initialising solver structure | |
88 % Setting solver structure fields (toolbox, name, param, solution, | |
89 % reconstructed and time) to zero values | |
90 | |
91 SMALL.solver(1)=SMALL_init_solver; | |
92 | |
93 % Defining the parameters needed for image denoising | |
94 | |
95 SMALL.solver(1).toolbox='ompbox'; | |
96 SMALL.solver(1).name='ompdenoise'; | |
97 | |
98 % Denoising the image - SMALL_denoise function is similar to SMALL_solve, | |
99 % but backward compatible with KSVD definition of denoising | |
100 | |
101 SMALL.solver(1)=SMALL_denoise(SMALL.Problem, SMALL.solver(1)); | |
102 | |
103 %% | |
104 % Use KSVDS Dictionary Learning Algorithm to denoise image | |
105 | |
106 % Initialising solver structure | |
107 % Setting solver structure fields (toolbox, name, param, solution, | |
108 % reconstructed and time) to zero values | |
109 | |
110 SMALL.DL(2)=SMALL_init_DL(); | |
111 | |
112 % Defining the parameters needed for dictionary learning | |
113 | |
114 SMALL.DL(2).toolbox = 'KSVDS'; | |
115 SMALL.DL(2).name = 'ksvds'; | |
116 | |
117 % Defining the parameters for KSVDS | |
118 % In this example we are learning 256 atoms in 20 iterations, so that | |
119 % every patch in the training set can be represented with target error in | |
120 % L2-norm (EDataS). We also impose "double sparsity" - dictionary itself | |
121 % has to be sparse in the given base dictionary (Tdict - number of | |
122 % nonzero elements per atom). | |
123 % Type help ksvds in MATLAB prompt for more options. | |
124 | |
125 EdataS=sqrt(prod(SMALL.Problem.blocksize)) * SMALL.Problem.sigma * SMALL.Problem.gain; | |
126 SMALL.DL(2).param=struct(... | |
127 'Edata', EdataS, ... | |
128 'Tdict', 6,... | |
129 'stepsize', 1,... | |
130 'dictsize', SMALL.Problem.p,... | |
131 'iternum', 20,... | |
132 'memusage', 'high'); | |
133 SMALL.DL(2).param.initA = speye(SMALL.Problem.p); | |
134 SMALL.DL(2).param.basedict{1} = odctdict(8,16); | |
135 SMALL.DL(2).param.basedict{2} = odctdict(8,16); | |
136 | |
137 % Learn the dictionary | |
138 | |
139 SMALL.DL(2) = SMALL_learn(SMALL.Problem, SMALL.DL(2)); | |
140 | |
141 % Set SMALL.Problem.A dictionary and SMALL.Problem.basedictionary | |
142 % (backward compatiblity with SPARCO: solver structure communicate | |
143 % only with Problem structure, ie no direct communication between DL and | |
144 % solver structures) | |
145 | |
146 SMALL.Problem.A = SMALL.DL(2).D; | |
147 SMALL.Problem.basedict{1} = SMALL.DL(2).param.basedict{1}; | |
148 SMALL.Problem.basedict{2} = SMALL.DL(2).param.basedict{2}; | |
149 | |
150 %% | |
151 % Initialising solver structure | |
152 % Setting solver structure fields (toolbox, name, param, solution, | |
153 % reconstructed and time) to zero values | |
154 | |
155 SMALL.solver(2)=SMALL_init_solver; | |
156 | |
157 % Defining the parameters needed for image denoising | |
158 | |
159 SMALL.solver(2).toolbox='ompsbox'; | |
160 SMALL.solver(2).name='ompsdenoise'; | |
161 | |
162 % Denoising the image - SMALL_denoise function is similar to SMALL_solve, | |
163 % but backward compatible with KSVD definition of denoising | |
164 % Pay attention that since implicit base dictionary is used, denoising | |
165 % can be much faster then using explicit dictionary in KSVD example. | |
166 | |
167 SMALL.solver(2)=SMALL_denoise(SMALL.Problem, SMALL.solver(2)); | |
168 | |
169 %% | |
170 % Use SPAMS Online Dictionary Learning Algorithm | |
171 % to Learn overcomplete dictionary (Julien Mairal 2009) | |
172 % (If you have not installed SPAMS please comment the following two cells) | |
173 | |
174 % Initialising Dictionary structure | |
175 % Setting Dictionary structure fields (toolbox, name, param, D and time) | |
176 % to zero values | |
177 | |
178 SMALL.DL(3)=SMALL_init_DL(); | |
179 | |
180 % Defining fields needed for dictionary learning | |
181 | |
182 SMALL.DL(3).toolbox = 'SPAMS'; | |
183 SMALL.DL(3).name = 'mexTrainDL'; | |
184 | |
185 % Type 'help mexTrainDL in MATLAB prompt for explanation of parameters. | |
186 | |
187 SMALL.DL(3).param=struct(... | |
188 'D', SMALL.Problem.initdict,... | |
189 'K', SMALL.Problem.p,... | |
190 'lambda', 2,... | |
191 'iter', 200,... | |
192 'mode', 3, ... | |
193 'modeD', 0); | |
194 | |
195 % Learn the dictionary | |
196 | |
197 SMALL.DL(3) = SMALL_learn(SMALL.Problem, SMALL.DL(3)); | |
198 | |
199 % Set SMALL.Problem.A dictionary | |
200 % (backward compatiblity with SPARCO: solver structure communicate | |
201 % only with Problem structure, ie no direct communication between DL and | |
202 % solver structures) | |
203 | |
204 SMALL.Problem.A = SMALL.DL(3).D; | |
205 | |
206 | |
207 %% | |
208 % Initialising solver structure | |
209 % Setting solver structure fields (toolbox, name, param, solution, | |
210 % reconstructed and time) to zero values | |
211 | |
212 SMALL.solver(3)=SMALL_init_solver; | |
213 | |
214 % Defining the parameters needed for denoising | |
215 | |
216 SMALL.solver(3).toolbox='ompbox'; | |
217 SMALL.solver(3).name='ompdenoise'; | |
218 | |
219 % Denoising the image - SMALL_denoise function is similar to SMALL_solve, | |
220 % but backward compatible with KSVD definition of denoising | |
221 | |
222 SMALL.solver(3)=SMALL_denoise(SMALL.Problem, SMALL.solver(3)); | |
223 | |
224 %% | |
225 % Plot results and save midi files | |
226 | |
227 % show results % | |
228 | |
229 SMALL_ImgDeNoiseResult(SMALL); |