Mercurial > hg > smallbox
comparison examples/Automatic Music Transcription/SMALL_AMT_DL_test.m @ 6:f72603404233
(none)
author | idamnjanovic |
---|---|
date | Mon, 22 Mar 2010 10:45:01 +0000 |
parents | |
children | cbf3521c25eb |
comparison
equal
deleted
inserted
replaced
5:f44689e95ea4 | 6:f72603404233 |
---|---|
1 %% DICTIONARY LEARNING FOR AUTOMATIC MUSIC TRANSCRIPTION EXAMPLE 1 | |
2 % This file contains an example of how SMALLbox can be used to test diferent | |
3 % dictionary learning techniques in Automatic Music Transcription problem. | |
4 % It calls generateAMT_Learning_Problem that will let you to choose midi, | |
5 % wave or mat file to be transcribe. If file is midi it will be first | |
6 % converted to wave and original midi file will be used for comparison with | |
7 % results of dictionary learning and reconstruction. | |
8 % The function will generarte the Problem structure that is used to learn | |
9 % Problem.p notes spectrograms from training set Problem.b using | |
10 % dictionary learning technique defined in DL structure. | |
11 % | |
12 % Ivan Damnjanovic 2010 | |
13 %% | |
14 | |
15 clear; | |
16 | |
17 | |
18 % Defining Automatic Transcription of Piano tune as Dictionary Learning | |
19 % Problem | |
20 | |
21 SMALL.Problem = generateAMT_Learning_Problem(); | |
22 | |
23 %% | |
24 % Use KSVD Dictionary Learning Algorithm to Learn 88 notes (defined in | |
25 % SMALL.Problem.p) using sparsity constrain only | |
26 | |
27 % Initialising Dictionary structure | |
28 % Setting Dictionary structure fields (toolbox, name, param, D and time) | |
29 % to zero values | |
30 | |
31 SMALL.DL(1)=SMALL_init_DL(); | |
32 | |
33 % Defining fields needed for dictionary learning | |
34 | |
35 SMALL.DL(1).toolbox = 'KSVD'; | |
36 SMALL.DL(1).name = 'ksvd'; | |
37 % Defining the parameters for KSVD | |
38 % In this example we are learning 88 atoms in 100 iterations, so that | |
39 % every frame in the training set can be represented with maximum 3 | |
40 % dictionary elements. Type help ksvd in MATLAB prompt for more options. | |
41 | |
42 SMALL.DL(1).param=struct(... | |
43 'Tdata', 3,... | |
44 'dictsize', SMALL.Problem.p,... | |
45 'iternum', 100); | |
46 | |
47 % Learn the dictionary | |
48 | |
49 SMALL.DL(1) = SMALL_learn(SMALL.Problem, SMALL.DL(1)); | |
50 | |
51 % Set SMALL.Problem.A dictionary and reconstruction function | |
52 % (backward compatiblity with SPARCO: solver structure communicate | |
53 % only with Problem structure, ie no direct communication between DL and | |
54 % solver structures) | |
55 | |
56 SMALL.Problem.A = SMALL.DL(1).D; | |
57 SMALL.Problem.reconstruct = @(x) SMALL_midiGenerate(x, SMALL.Problem); | |
58 | |
59 %% | |
60 % Initialising solver structure | |
61 % Setting solver structure fields (toolbox, name, param, solution, | |
62 % reconstructed and time) to zero values | |
63 % As an example, SPAMS (Julien Mairal 2009) implementation of LARS | |
64 % algorithm is used for representation of training set in the learned | |
65 % dictionary. | |
66 | |
67 SMALL.solver(1)=SMALL_init_solver; | |
68 | |
69 % Defining the parameters needed for sparse representation | |
70 | |
71 SMALL.solver(1).toolbox='SPAMS'; | |
72 SMALL.solver(1).name='mexLasso'; | |
73 | |
74 % Here we use mexLasso mode=2, with lambda=2, lambda2=0 and positivity | |
75 % constrain (type 'help mexLasso' for more information about modes): | |
76 % | |
77 % min_{alpha_i} (1/2)||x_i-Dalpha_i||_2^2 + lambda||alpha_i||_1 + (1/2)lambda2||alpha_i||_2^2 | |
78 | |
79 SMALL.solver(1).param=struct(... | |
80 'lambda', 2,... | |
81 'pos', 1,... | |
82 'mode', 2); | |
83 | |
84 % Call SMALL_soolve to represent the signal in the given dictionary. | |
85 % As a final command SMALL_solve will call above defined reconstruction | |
86 % function to reconstruct the training set (Problem.b) in the learned | |
87 % dictionary (Problem.A) | |
88 | |
89 SMALL.solver(1)=SMALL_solve(SMALL.Problem, SMALL.solver(1)); | |
90 | |
91 %% | |
92 % Analysis of the result of automatic music transcription. If groundtruth | |
93 % exists, we can compare transcribed notes and original and get usual | |
94 % True Positives, False Positives and False Negatives measures. | |
95 | |
96 if ~isempty(SMALL.Problem.notesOriginal) | |
97 AMT_res(1) = AMT_analysis(SMALL.Problem, SMALL.solver(1)); | |
98 end | |
99 | |
100 | |
101 %% | |
102 % Here we solve the same problem using non-negative sparse coding with | |
103 % SPAMS online dictionary learning (Julien Mairal 2009) | |
104 % | |
105 | |
106 % Initialising Dictionary structure | |
107 % Setting Dictionary structure fields (toolbox, name, param, D and time) | |
108 % to zero values | |
109 | |
110 SMALL.DL(2)=SMALL_init_DL(); | |
111 | |
112 | |
113 % Defining fields needed for dictionary learning | |
114 | |
115 SMALL.DL(2).toolbox = 'SPAMS'; | |
116 SMALL.DL(2).name = 'mexTrainDL'; | |
117 | |
118 % Type 'help mexTrainDL in MATLAB prompt for explanation of parameters. | |
119 | |
120 SMALL.DL(2).param=struct(... | |
121 'K', SMALL.Problem.p,... | |
122 'lambda', 3,... | |
123 'iter', 300,... | |
124 'posAlpha', 1,... | |
125 'posD', 1,... | |
126 'whiten', 0,... | |
127 'mode', 2); | |
128 | |
129 % Learn the dictionary | |
130 | |
131 SMALL.DL(2) = SMALL_learn(SMALL.Problem, SMALL.DL(2)); | |
132 | |
133 % Set SMALL.Problem.A dictionary and reconstruction function | |
134 % (backward compatiblity with SPARCO: solver structure communicate | |
135 % only with Problem structure, ie no direct communication between DL and | |
136 % solver structures) | |
137 | |
138 SMALL.Problem.A = SMALL.DL(2).D; | |
139 SMALL.Problem.reconstruct=@(x) SMALL_midiGenerate(x, SMALL.Problem); | |
140 | |
141 %% | |
142 % Initialising solver structure | |
143 % Setting solver structure fields (toolbox, name, param, solution, | |
144 % reconstructed and time) to zero values | |
145 % As an example, SPAMS (Julien Mairal 2009) implementation of LARS | |
146 % algorithm is used for representation of training set in the learned | |
147 % dictionary. | |
148 | |
149 SMALL.solver(2)=SMALL_init_solver; | |
150 | |
151 % Defining the parameters needed for sparse representation | |
152 | |
153 SMALL.solver(2).toolbox='SPAMS'; | |
154 SMALL.solver(2).name='mexLasso'; | |
155 | |
156 % Here we use mexLasso mode=2, with lambda=3, lambda2=0 and positivity | |
157 % constrain (type 'help mexLasso' for more information about modes): | |
158 % | |
159 % min_{alpha_i} (1/2)||x_i-Dalpha_i||_2^2 + lambda||alpha_i||_1 + (1/2)lambda2||alpha_i||_2^2 | |
160 | |
161 SMALL.solver(2).param=struct('lambda', 3, 'pos', 1, 'mode', 2); | |
162 | |
163 % Call SMALL_soolve to represent the signal in the given dictionary. | |
164 % As a final command SMALL_solve will call above defined reconstruction | |
165 % function to reconstruct the training set (Problem.b) in the learned | |
166 % dictionary (Problem.A) | |
167 | |
168 SMALL.solver(2)=SMALL_solve(SMALL.Problem, SMALL.solver(2)); | |
169 | |
170 %% | |
171 % Analysis of the result of automatic music transcription. If groundtruth | |
172 % exists, we can compare transcribed notes and original and get usual | |
173 % True Positives, False Positives and False Negatives measures. | |
174 | |
175 if ~isempty(SMALL.Problem.notesOriginal) | |
176 AMT_res(2) = AMT_analysis(SMALL.Problem, SMALL.solver(2)); | |
177 end | |
178 | |
179 %% | |
180 % Plot results and save midi files | |
181 | |
182 if ~isempty(SMALL.Problem.notesOriginal) | |
183 figAMT = SMALL_AMT_plot(SMALL, AMT_res); | |
184 else | |
185 figAMT = figure('Name', 'Automatic Music Transcription KSVD vs SPAMS'); | |
186 subplot(2,1,1); plot(SMALL.solver(1).reconstructed.notes(:,5), SMALL.solver(1).reconstructed.notes(:,3), 'kd '); | |
187 title (sprintf('%s dictionary in %.2f s', SMALL.DL(1).name, SMALL.DL(1).time)); | |
188 xlabel('Time'); | |
189 ylabel('Note Number'); | |
190 subplot(2,1,2); plot(SMALL.solver(2).reconstructed.notes(:,5), SMALL.solver(2).reconstructed.notes(:,3), 'b* '); | |
191 title (sprintf('%s dictionary in %.2f s', SMALL.DL(2).name, SMALL.DL(2).time)); | |
192 xlabel('Time'); | |
193 ylabel('Note Number'); | |
194 end | |
195 | |
196 FS=filesep; | |
197 | |
198 [pathstr1, name, ext, versn] = fileparts(which('SMALLboxSetup.m')); | |
199 cd([pathstr1,FS,'results']); | |
200 | |
201 [filename,pathname] = uiputfile({' *.mid;' },'Save KSVD result midi'); | |
202 if filename~=0 writemidi(SMALL.solver(1).reconstructed.midi, [pathname,FS,filename]);end | |
203 | |
204 [filename,pathname] = uiputfile({' *.mid;' },'Save SPAMS result midi'); | |
205 if filename~=0 writemidi(SMALL.solver(2).reconstructed.midi, [pathname,FS,filename]);end | |
206 | |
207 [filename,pathname] = uiputfile({' *.fig;' },'Save KSVD vs SPAMS AMT figure'); | |
208 if filename~=0 saveas(figAMT, [pathname,FS,filename]);end | |
209 | |
210 | |
211 |