Mercurial > hg > smallbox
comparison examples/Image Denoising/SMALL_ImgDenoise_DL_test_KSVDvsRLSDLA.m @ 78:f69ae88b8be5
added Rice Wavelet Toolbox with my modification, so it can be compiled on newer systems.
author | Ivan Damnjanovic lnx <ivan.damnjanovic@eecs.qmul.ac.uk> |
---|---|
date | Fri, 25 Mar 2011 15:27:33 +0000 |
parents | 55faa9b5d1ac |
children | 4302a91e6033 |
comparison
equal
deleted
inserted
replaced
76:d052ec5b742f | 78:f69ae88b8be5 |
---|---|
28 TMPpath=pwd; | 28 TMPpath=pwd; |
29 FS=filesep; | 29 FS=filesep; |
30 [pathstr1, name, ext, versn] = fileparts(which('SMALLboxSetup.m')); | 30 [pathstr1, name, ext, versn] = fileparts(which('SMALLboxSetup.m')); |
31 cd([pathstr1,FS,'data',FS,'images']); | 31 cd([pathstr1,FS,'data',FS,'images']); |
32 load('test_image.mat'); | 32 load('test_image.mat'); |
33 cd(TMPpath); | |
33 % [filename,pathname] = uigetfile({'*.png;'},'Select a file containin pre-calculated notes'); | 34 % [filename,pathname] = uigetfile({'*.png;'},'Select a file containin pre-calculated notes'); |
34 % [pathstr, name, ext, versn] = fileparts(filename); | 35 % [pathstr, name, ext, versn] = fileparts(filename); |
35 % test_image = imread(filename); | 36 % test_image = imread(filename); |
36 % test_image = double(test_image); | 37 % test_image = double(test_image); |
37 % cd(TMPpath); | 38 % cd(TMPpath); |
39 | 40 |
40 noise_level=[10 20 25 50 100]; | 41 noise_level=[10 20 25 50 100]; |
41 % Defining Image Denoising Problem as Dictionary Learning | 42 % Defining Image Denoising Problem as Dictionary Learning |
42 % Problem. As an input we set the number of training patches. | 43 % Problem. As an input we set the number of training patches. |
43 for noise_ind=1:1 | 44 for noise_ind=1:1 |
44 for im_num=4:4 | 45 for im_num=2:2 |
45 SMALL.Problem = generateImageDenoiseProblem(test_image(im_num).i, 40000, '',256, noise_level(noise_ind)); | 46 SMALL.Problem = generateImageDenoiseProblem(test_image(im_num).i, 40000, '',256, noise_level(noise_ind)); |
46 SMALL.Problem.name=im_num; | 47 SMALL.Problem.name=int2str(im_num); |
47 | 48 |
48 results(noise_ind,im_num).noisy_psnr=SMALL.Problem.noisy_psnr; | 49 results(noise_ind,im_num).noisy_psnr=SMALL.Problem.noisy_psnr; |
49 | 50 |
50 %% | 51 %% |
51 % Use KSVD Dictionary Learning Algorithm to Learn overcomplete dictionary | 52 % Use KSVD Dictionary Learning Algorithm to Learn overcomplete dictionary |