comparison util/classes/dictionaryMatrices/grassmannian.m @ 160:e3035d45d014 danieleb

Added support classes
author Daniele Barchiesi <daniele.barchiesi@eecs.qmul.ac.uk>
date Wed, 31 Aug 2011 10:53:10 +0100
parents
children 88578ec2f94a
comparison
equal deleted inserted replaced
159:23763c5fbda5 160:e3035d45d014
1 function [A G res muMin] = grassmannian(n,m,nIter,dd1,dd2,initA,verb)
2 % grassmanian attempts to create an n by m matrix with minimal mutual
3 % coherence using an iterative projection method.
4 %
5 % [A G res] = grassmanian(n,m,nIter,dd1,dd2,initA)
6 %
7 %
8 %% Parameters and Defaults
9 error(nargchk(2,7,nargin));
10
11 if ~exist('verb','var') || isempty(verb), verb = false; end %verbose output
12 if ~exist('initA','var') || isempty(initA), initA = randn(n,m); end %initial matrix
13 if ~exist('dd2','var') || isempty(dd2), dd2 = 0.95; end %shrinking factor
14 if ~exist('dd1','var') || isempty(dd1), dd1 = 0.9; end %percentage of coherences to be shrinked
15 if ~exist('nIter','var') || isempty(nIter), nIter = 5; end %number of iterations
16
17 %% Compute svd and gramian
18 A = normc(initA); %normalise columns
19 [Uinit Sigma] = svd(A); %calculate svd of the matrix
20 G = A'*A; %gramian matrix
21
22 muMin = sqrt((m-n)/(n*(m-1))); %Lower bound on mutual coherence
23 res = zeros(nIter,1);
24 for iIter = 1:nIter
25 gg = sort(abs(G(:))); %sort inner products from less to ost correlated
26 pos = find(abs(G(:))>gg(round(dd1*(m^2-m))) & abs(G(:)-1)>1e-6);
27 G(pos) = G(pos)*dd2;
28 [U S V] = svd(G);
29 S(n+1:end,1+n:end) = 0;
30 G = U*S*V';
31 G = diag(1./abs(sqrt(diag(G))))*G*diag(1./abs(sqrt(diag(G))));
32 gg = sort(abs(G(:)));
33 pos = find(abs(G(:))>gg(round(dd1*(m^2-m))) & abs(G(:)-1)>1e-6);
34 res(iIter) = max(abs(G(pos)));
35 if verb
36 fprintf(1,'%6i %12.8f %12.8f %12.8f \n',...
37 [iIter,muMin,mean(abs(G(pos))),max(abs(G(pos)))]);
38 end
39 end
40
41 [~, Sigma_gram V_gram] = svd(G); %calculate svd decomposition of gramian
42 Sigma_new = sqrt(Sigma_gram(1:n,:)).*sign(Sigma);
43 A = Uinit*Sigma_new*V_gram';
44 A = normc(A);