comparison examples/SMALL_DL_test.m @ 195:d50f5bdbe14c luisf_dev

- Added SMALL_DL_test: simple DL showcase - Added dico_decorr_symmetric: improved version of INK-SVD decorrelation step - Debugged SMALL_learn, SMALLBoxInit and SMALL_two_step_DL
author Daniele Barchiesi <daniele.barchiesi@eecs.qmul.ac.uk>
date Wed, 14 Mar 2012 14:42:52 +0000
parents
children fd0b5d36f6ad
comparison
equal deleted inserted replaced
190:759313488e7b 195:d50f5bdbe14c
1 function SMALL_DL_test
2 clear, clc, close all
3 % Create a 2-dimensional dataset of points that are oriented in 3
4 % directions on a x/y plane
5
6 %
7 % Centre for Digital Music, Queen Mary, University of London.
8 % This file copyright 2012 Daniele Barchiesi.
9 %
10 % This program is free software; you can redistribute it and/or
11 % modify it under the terms of the GNU General Public License as
12 % published by the Free Software Foundation; either version 2 of the
13 % License, or (at your option) any later version. See the file
14 % COPYING included with this distribution for more information.
15
16 nData = 10000; %number of data
17 theta = [pi/6 pi/3 4*pi/6]; %angles
18 nAngles = length(theta); %number of angles
19 Q = [cos(theta); sin(theta)]; %rotation matrix
20 X = Q*randmog(nAngles,nData); %training data
21
22 % find principal directions using PCA
23 XXt = X*X'; %cross correlation matrix
24 [U ~] = svd(XXt); %svd of XXt
25
26 scale = 3; %scale factor for plots
27 subplot(1,2,1), hold on
28 title('Principal Component Analysis')
29 scatter(X(1,:), X(2,:),'.'); %scatter training data
30 O = zeros(size(U)); %origin
31 quiver(O(1,1:2),O(2,1:2),scale*U(1,:),scale*U(2,:),...
32 'LineWidth',2,'Color','k') %plot atoms
33 axis equal %scale axis
34
35 subplot(1,2,2), hold on
36 title('K-SVD Dictionary')
37 scatter(X(1,:), X(2,:),'.');
38 axis equal
39
40 nAtoms = 3; %number of atoms in the dictionary
41 nIter = 1; %number of dictionary learning iterations
42 initDict = normc(randn(2,nAtoms)); %random initial dictionary
43 O = zeros(size(initDict)); %origin
44
45 % apply dictionary learning algorithm
46 ksvd_params = struct('data',X,... %training data
47 'Tdata',1,... %sparsity level
48 'dictsize',nAtoms,... %number of atoms
49 'initdict',initDict,...%initial dictionary
50 'iternum',10); %number of iterations
51 DL = SMALL_init_DL('ksvd','ksvd',ksvd_params); %dictionary learning structure
52 DL.D = initDict; %copy initial dictionary in solution variable
53 problem = struct('b',X); %copy training data in problem structure
54
55 xdata = DL.D(1,:);
56 ydata = DL.D(2,:);
57 qPlot = quiver(O(1,:),O(2,:),scale*initDict(1,:),scale*initDict(2,:),...
58 'LineWidth',2,'Color','k','UDataSource','xdata','VDataSource','ydata');
59
60 for iIter=1:nIter
61 DL.ksvd_params.initdict = DL.D;
62 pause
63 DL = SMALL_learn(problem,DL); %learn dictionary
64 xdata = scale*DL.D(1,:);
65 ydata = scale*DL.D(2,:);
66 refreshdata(gcf,'caller');
67 end
68
69
70 function X = randmog(m, n)
71 % RANDMOG - Generate mixture of Gaussians
72 s = [0.2 2];
73 % Choose which Gaussian
74 G1 = (rand(m, n) < 0.9);
75 % Make them
76 X = (G1.*s(1) + (1-G1).*s(2)) .* randn(m,n);