comparison examples/SMALL_DL_test.m @ 193:cc540df790f4 danieleb

Simple example that demonstrated dictionary learning... to be completed
author Daniele Barchiesi <daniele.barchiesi@eecs.qmul.ac.uk>
date Fri, 09 Mar 2012 15:12:01 +0000
parents
children 9b0595a8478d
comparison
equal deleted inserted replaced
192:f1e601cc916d 193:cc540df790f4
1 function SMALL_DL_test
2 clear, clc, close all
3 % Create a 2-dimensional dataset of points that are oriented in 3
4 % directions on a x-y plane
5 nData = 10000; %number of data
6 theta = [pi/6 pi/3 4*pi/6]; %angles
7 m = length(theta);
8 Q = [cos(theta); sin(theta)]; %rotation matrix
9 X = Q*randmog(m,nData);
10
11 % find principal directions using PCA and plot them
12 XXt = X*X';
13 [U ~] = svd(XXt);
14 scale = 3;
15 subplot(1,2,1), hold on
16 title('Principal Component Analysis')
17 scatter(X(1,:), X(2,:),'.');
18 O = zeros(size(U));
19 quiver(O(1,1:2),O(2,1:2),scale*U(1,:),scale*U(2,:),'LineWidth',2,'Color','k')
20 axis equal
21
22 subplot(1,2,2), hold on
23 title('K-SVD Dictionary')
24 scatter(X(1,:), X(2,:),'.');
25 axis equal
26 nAtoms = 3;
27 initDict = randn(2,nAtoms);
28 nIter = 10;
29 O = zeros(size(initDict));
30 % apply dictionary learning algorithm
31 ksvd_params = struct('data',X,... %training data
32 'Tdata',1,... %sparsity level
33 'dictsize',nAtoms,... %number of atoms
34 'initdict',initDict,...
35 'iternum',10); %number of iterations
36 DL = SMALL_init_DL('ksvd','ksvd',ksvd_params);
37 DL.D = initDict;
38 xdata = DL.D(1,:);
39 ydata = DL.D(2,:);
40 qPlot = quiver(O(1,:),O(2,:),scale*initDict(1,:),scale*initDict(2,:),...
41 'LineWidth',2,'Color','k','XDataSource','xdata','YDataSource','ydata');
42 problem = struct('b',X); %training data
43
44 %plot dictionary and learn
45 for iIter=1:nIter
46 DL.ksvd_params.initdict = DL.D;
47 DL = SMALL_learn(problem,DL); %learn dictionary
48 xdata = DL.D(1,:);
49 ydata = DL.D(2,:);
50 pause
51 refreshdata(gcf,'caller');
52 %quiver(O(1,:),O(2,:),scale*DL.D(1,:),scale*DL.D(2,:),'LineWidth',2,'Color','k');
53 end
54
55
56 function X = randmog(m, n)
57 % RANDMOG - Generate mixture of Gaussians
58 s = [0.2 2];
59 % Choose which Gaussian
60 G1 = (rand(m, n) < 0.9);
61 % Make them
62 X = (G1.*s(1) + (1-G1).*s(2)) .* randn(m,n);