comparison examples/Automatic Music Transcription/SMALL_AMT_DL_test.m @ 25:cbf3521c25eb

(none)
author idamnjanovic
date Tue, 27 Apr 2010 13:33:13 +0000
parents f72603404233
children dab78a3598b6
comparison
equal deleted inserted replaced
24:fc395272d53e 25:cbf3521c25eb
1 %% DICTIONARY LEARNING FOR AUTOMATIC MUSIC TRANSCRIPTION EXAMPLE 1 1 %% DICTIONARY LEARNING FOR AUTOMATIC MUSIC TRANSCRIPTION EXAMPLE 1
2 %
3 % Centre for Digital Music, Queen Mary, University of London.
4 % This file copyright 2010 Ivan Damnjanovic.
5 %
6 % This program is free software; you can redistribute it and/or
7 % modify it under the terms of the GNU General Public License as
8 % published by the Free Software Foundation; either version 2 of the
9 % License, or (at your option) any later version. See the file
10 % COPYING included with this distribution for more information.
11 %
2 % This file contains an example of how SMALLbox can be used to test diferent 12 % This file contains an example of how SMALLbox can be used to test diferent
3 % dictionary learning techniques in Automatic Music Transcription problem. 13 % dictionary learning techniques in Automatic Music Transcription problem.
4 % It calls generateAMT_Learning_Problem that will let you to choose midi, 14 % It calls generateAMT_Learning_Problem that will let you to choose midi,
5 % wave or mat file to be transcribe. If file is midi it will be first 15 % wave or mat file to be transcribe. If file is midi it will be first
6 % converted to wave and original midi file will be used for comparison with 16 % converted to wave and original midi file will be used for comparison with
7 % results of dictionary learning and reconstruction. 17 % results of dictionary learning and reconstruction.
8 % The function will generarte the Problem structure that is used to learn 18 % The function will generarte the Problem structure that is used to learn
9 % Problem.p notes spectrograms from training set Problem.b using 19 % Problem.p notes spectrograms from training set Problem.b using
10 % dictionary learning technique defined in DL structure. 20 % dictionary learning technique defined in DL structure.
11 % 21 %
12 % Ivan Damnjanovic 2010
13 %% 22 %%
14 23
15 clear; 24 clear;
16 25
17 26
38 % In this example we are learning 88 atoms in 100 iterations, so that 47 % In this example we are learning 88 atoms in 100 iterations, so that
39 % every frame in the training set can be represented with maximum 3 48 % every frame in the training set can be represented with maximum 3
40 % dictionary elements. Type help ksvd in MATLAB prompt for more options. 49 % dictionary elements. Type help ksvd in MATLAB prompt for more options.
41 50
42 SMALL.DL(1).param=struct(... 51 SMALL.DL(1).param=struct(...
43 'Tdata', 3,... 52 'Tdata', 10,...
44 'dictsize', SMALL.Problem.p,... 53 'dictsize', SMALL.Problem.p,...
45 'iternum', 100); 54 'iternum', 100);
46 55
47 % Learn the dictionary 56 % Learn the dictionary
48 57
66 75
67 SMALL.solver(1)=SMALL_init_solver; 76 SMALL.solver(1)=SMALL_init_solver;
68 77
69 % Defining the parameters needed for sparse representation 78 % Defining the parameters needed for sparse representation
70 79
71 SMALL.solver(1).toolbox='SPAMS'; 80 SMALL.solver(1).toolbox='SMALL';
72 SMALL.solver(1).name='mexLasso'; 81 SMALL.solver(1).name='SMALL_cgp';
73 82
74 % Here we use mexLasso mode=2, with lambda=2, lambda2=0 and positivity 83 % Here we use mexLasso mode=2, with lambda=2, lambda2=0 and positivity
75 % constrain (type 'help mexLasso' for more information about modes): 84 % constrain (type 'help mexLasso' for more information about modes):
76 % 85 %
77 % min_{alpha_i} (1/2)||x_i-Dalpha_i||_2^2 + lambda||alpha_i||_1 + (1/2)lambda2||alpha_i||_2^2 86 % min_{alpha_i} (1/2)||x_i-Dalpha_i||_2^2 + lambda||alpha_i||_1 + (1/2)lambda2||alpha_i||_2^2
78 87
79 SMALL.solver(1).param=struct(... 88 SMALL.solver(1).param='20, 1e-2';
80 'lambda', 2,... 89 % struct(...
81 'pos', 1,... 90 % 'lambda', 2,...
82 'mode', 2); 91 % 'pos', 1,...
92 % 'mode', 2);
83 93
84 % Call SMALL_soolve to represent the signal in the given dictionary. 94 % Call SMALL_soolve to represent the signal in the given dictionary.
85 % As a final command SMALL_solve will call above defined reconstruction 95 % As a final command SMALL_solve will call above defined reconstruction
86 % function to reconstruct the training set (Problem.b) in the learned 96 % function to reconstruct the training set (Problem.b) in the learned
87 % dictionary (Problem.A) 97 % dictionary (Problem.A)
97 AMT_res(1) = AMT_analysis(SMALL.Problem, SMALL.solver(1)); 107 AMT_res(1) = AMT_analysis(SMALL.Problem, SMALL.solver(1));
98 end 108 end
99 109
100 110
101 %% 111 %%
102 % Here we solve the same problem using non-negative sparse coding with 112
103 % SPAMS online dictionary learning (Julien Mairal 2009) 113 % % Here we solve the same problem using non-negative sparse coding with
104 % 114 % % SPAMS online dictionary learning (Julien Mairal 2009)
105 115 % %
106 % Initialising Dictionary structure 116 %
107 % Setting Dictionary structure fields (toolbox, name, param, D and time) 117 % % Initialising Dictionary structure
108 % to zero values 118 % % Setting Dictionary structure fields (toolbox, name, param, D and time)
109 119 % % to zero values
110 SMALL.DL(2)=SMALL_init_DL(); 120 %
111 121 % SMALL.DL(2)=SMALL_init_DL();
112 122 %
113 % Defining fields needed for dictionary learning 123 %
114 124 % % Defining fields needed for dictionary learning
115 SMALL.DL(2).toolbox = 'SPAMS'; 125 %
116 SMALL.DL(2).name = 'mexTrainDL'; 126 % SMALL.DL(2).toolbox = 'SPAMS';
117 127 % SMALL.DL(2).name = 'mexTrainDL';
118 % Type 'help mexTrainDL in MATLAB prompt for explanation of parameters. 128 %
119 129 % % Type 'help mexTrainDL in MATLAB prompt for explanation of parameters.
120 SMALL.DL(2).param=struct(... 130 %
121 'K', SMALL.Problem.p,... 131 % SMALL.DL(2).param=struct(...
122 'lambda', 3,... 132 % 'K', SMALL.Problem.p,...
123 'iter', 300,... 133 % 'lambda', 3,...
124 'posAlpha', 1,... 134 % 'iter', 300,...
125 'posD', 1,... 135 % 'posAlpha', 1,...
126 'whiten', 0,... 136 % 'posD', 1,...
127 'mode', 2); 137 % 'whiten', 0,...
128 138 % 'mode', 2);
129 % Learn the dictionary 139 %
130 140 % % Learn the dictionary
131 SMALL.DL(2) = SMALL_learn(SMALL.Problem, SMALL.DL(2)); 141 %
132 142 % SMALL.DL(2) = SMALL_learn(SMALL.Problem, SMALL.DL(2));
133 % Set SMALL.Problem.A dictionary and reconstruction function 143 %
134 % (backward compatiblity with SPARCO: solver structure communicate 144 % % Set SMALL.Problem.A dictionary and reconstruction function
135 % only with Problem structure, ie no direct communication between DL and 145 % % (backward compatiblity with SPARCO: solver structure communicate
136 % solver structures) 146 % % only with Problem structure, ie no direct communication between DL and
137 147 % % solver structures)
138 SMALL.Problem.A = SMALL.DL(2).D; 148 %
139 SMALL.Problem.reconstruct=@(x) SMALL_midiGenerate(x, SMALL.Problem); 149 % SMALL.Problem.A = SMALL.DL(2).D;
140 150 % SMALL.Problem.reconstruct=@(x) SMALL_midiGenerate(x, SMALL.Problem);
141 %% 151 %
142 % Initialising solver structure 152 % %%
143 % Setting solver structure fields (toolbox, name, param, solution, 153 % % Initialising solver structure
144 % reconstructed and time) to zero values 154 % % Setting solver structure fields (toolbox, name, param, solution,
145 % As an example, SPAMS (Julien Mairal 2009) implementation of LARS 155 % % reconstructed and time) to zero values
146 % algorithm is used for representation of training set in the learned 156 % % As an example, SPAMS (Julien Mairal 2009) implementation of LARS
147 % dictionary. 157 % % algorithm is used for representation of training set in the learned
148 158 % % dictionary.
149 SMALL.solver(2)=SMALL_init_solver; 159 %
150 160 % SMALL.solver(2)=SMALL_init_solver;
151 % Defining the parameters needed for sparse representation 161 %
152 162 % % Defining the parameters needed for sparse representation
153 SMALL.solver(2).toolbox='SPAMS'; 163 %
154 SMALL.solver(2).name='mexLasso'; 164 % SMALL.solver(2).toolbox='SPAMS';
155 165 % SMALL.solver(2).name='mexLasso';
156 % Here we use mexLasso mode=2, with lambda=3, lambda2=0 and positivity 166 %
157 % constrain (type 'help mexLasso' for more information about modes): 167 % % Here we use mexLasso mode=2, with lambda=3, lambda2=0 and positivity
158 % 168 % % constrain (type 'help mexLasso' for more information about modes):
159 % min_{alpha_i} (1/2)||x_i-Dalpha_i||_2^2 + lambda||alpha_i||_1 + (1/2)lambda2||alpha_i||_2^2 169 % %
160 170 % % min_{alpha_i} (1/2)||x_i-Dalpha_i||_2^2 + lambda||alpha_i||_1 + (1/2)lambda2||alpha_i||_2^2
161 SMALL.solver(2).param=struct('lambda', 3, 'pos', 1, 'mode', 2); 171 %
162 172 % SMALL.solver(2).param=struct('lambda', 3, 'pos', 1, 'mode', 2);
163 % Call SMALL_soolve to represent the signal in the given dictionary. 173 %
164 % As a final command SMALL_solve will call above defined reconstruction 174 % % Call SMALL_soolve to represent the signal in the given dictionary.
165 % function to reconstruct the training set (Problem.b) in the learned 175 % % As a final command SMALL_solve will call above defined reconstruction
166 % dictionary (Problem.A) 176 % % function to reconstruct the training set (Problem.b) in the learned
167 177 % % dictionary (Problem.A)
168 SMALL.solver(2)=SMALL_solve(SMALL.Problem, SMALL.solver(2)); 178 %
169 179 % SMALL.solver(2)=SMALL_solve(SMALL.Problem, SMALL.solver(2));
170 %% 180 %
171 % Analysis of the result of automatic music transcription. If groundtruth 181 % %%
172 % exists, we can compare transcribed notes and original and get usual 182 % % Analysis of the result of automatic music transcription. If groundtruth
173 % True Positives, False Positives and False Negatives measures. 183 % % exists, we can compare transcribed notes and original and get usual
174 184 % % True Positives, False Positives and False Negatives measures.
175 if ~isempty(SMALL.Problem.notesOriginal) 185 %
176 AMT_res(2) = AMT_analysis(SMALL.Problem, SMALL.solver(2)); 186 % if ~isempty(SMALL.Problem.notesOriginal)
177 end 187 % AMT_res(2) = AMT_analysis(SMALL.Problem, SMALL.solver(2));
188 % end
178 189
179 %% 190 %%
180 % Plot results and save midi files 191 % Plot results and save midi files
181 192
182 if ~isempty(SMALL.Problem.notesOriginal) 193 if ~isempty(SMALL.Problem.notesOriginal)