comparison util/SMALL_learn.m @ 155:b14209313ba4 ivand_dev

Integration of Majorization Minimisation Dictionary Learning
author Ivan Damnjanovic lnx <ivan.damnjanovic@eecs.qmul.ac.uk>
date Mon, 22 Aug 2011 11:46:35 +0100
parents 485747bf39e0
children 7426503fc4d1 75b5dedcfd45 759313488e7b
comparison
equal deleted inserted replaced
154:0de08f68256b 155:b14209313ba4
67 % unit lenght. 67 % unit lenght.
68 68
69 for i = 1: size(DL.D,2) 69 for i = 1: size(DL.D,2)
70 DL.D(:,i)=DL.D(:,i)/norm(DL.D(:,i)); 70 DL.D(:,i)=DL.D(:,i)/norm(DL.D(:,i));
71 end 71 end
72 D = DL.D;
73
74 elseif strcmpi(DL.toolbox,'MMbox')
75
76 DL = wrapper_mm_DL(Problem, DL);
77
78 % we need to make sure that columns are normalised to
79 % unit lenght.
80
81 for i = 1: size(DL.D,2)
82 DL.D(:,i)=DL.D(:,i)/norm(DL.D(:,i));
83 end
72 D = DL.D; 84 D = DL.D;
85
73 % To introduce new dictionary learning technique put the files in 86 % To introduce new dictionary learning technique put the files in
74 % your Matlab path. Next, unique name <TolboxID> for your toolbox needs 87 % your Matlab path. Next, unique name <TolboxID> for your toolbox needs
75 % to be defined and also prefferd API for toolbox functions <Preffered_API> 88 % to be defined and also prefferd API for toolbox functions <Preffered_API>
76 % 89 %
77 % elseif strcmpi(DL.toolbox,'<ToolboxID>') 90 % elseif strcmpi(DL.toolbox,'<ToolboxID>')