comparison DL/RLS-DLA/SolveFISTA.m @ 60:ad36f80e2ccf

(none)
author idamnjanovic
date Tue, 15 Mar 2011 12:20:59 +0000
parents 6416fc12f2b8
children
comparison
equal deleted inserted replaced
59:23f9dd7b9d78 60:ad36f80e2ccf
1 % Copyright ©2010. The Regents of the University of California (Regents).
2 % All Rights Reserved. Contact The Office of Technology Licensing,
3 % UC Berkeley, 2150 Shattuck Avenue, Suite 510, Berkeley, CA 94720-1620,
4 % (510) 643-7201, for commercial licensing opportunities.
5
6 % Authors: Arvind Ganesh, Allen Y. Yang, Zihan Zhou.
7 % Contact: Allen Y. Yang, Department of EECS, University of California,
8 % Berkeley. <yang@eecs.berkeley.edu>
9
10 % IN NO EVENT SHALL REGENTS BE LIABLE TO ANY PARTY FOR DIRECT, INDIRECT,
11 % SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES, INCLUDING LOST PROFITS,
12 % ARISING OUT OF THE USE OF THIS SOFTWARE AND ITS DOCUMENTATION, EVEN IF
13 % REGENTS HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
14
15 % REGENTS SPECIFICALLY DISCLAIMS ANY WARRANTIES, INCLUDING, BUT NOT LIMITED
16 % TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
17 % PARTICULAR PURPOSE. THE SOFTWARE AND ACCOMPANYING DOCUMENTATION, IF ANY,
18 % PROVIDED HEREUNDER IS PROVIDED "AS IS". REGENTS HAS NO OBLIGATION TO
19 % PROVIDE MAINTENANCE, SUPPORT, UPDATES, ENHANCEMENTS, OR MODIFICATIONS.
20
21 %% This function is modified from Matlab code proximal_gradient_bp
22
23 function [x_hat,nIter] = SolveFISTA(A,b, varargin)
24
25 % b - m x 1 vector of observations/data (required input)
26 % A - m x n measurement matrix (required input)
27 %
28 % tol - tolerance for stopping criterion.
29 % - DEFAULT 1e-7 if omitted or -1.
30 % maxIter - maxilambdam number of iterations
31 % - DEFAULT 10000, if omitted or -1.
32 % lineSearchFlag - 1 if line search is to be done every iteration
33 % - DEFAULT 0, if omitted or -1.
34 % continuationFlag - 1 if a continuation is to be done on the parameter lambda
35 % - DEFAULT 1, if omitted or -1.
36 % eta - line search parameter, should be in (0,1)
37 % - ignored if lineSearchFlag is 0.
38 % - DEFAULT 0.9, if omitted or -1.
39 % lambda - relaxation parameter
40 % - ignored if continuationFlag is 1.
41 % - DEFAULT 1e-3, if omitted or -1.
42 % outputFileName - Details of each iteration are dumped here, if provided.
43 %
44 % x_hat - estimate of coeeficient vector
45 % numIter - number of iterations until convergence
46 %
47 %
48 % References
49 % "Robust PCA: Exact Recovery of Corrupted Low-Rank Matrices via Convex Optimization", J. Wright et al., preprint 2009.
50 % "An Accelerated Proximal Gradient Algorithm for Nuclear Norm Regularized Least Squares problems", K.-C. Toh and S. Yun, preprint 2009.
51 %
52 % Arvind Ganesh, Summer 2009. Questions? abalasu2@illinois.edu
53
54 DEBUG = 0 ;
55
56 STOPPING_GROUND_TRUTH = -1;
57 STOPPING_DUALITY_GAP = 1;
58 STOPPING_SPARSE_SUPPORT = 2;
59 STOPPING_OBJECTIVE_VALUE = 3;
60 STOPPING_SUBGRADIENT = 4;
61 STOPPING_DEFAULT = STOPPING_SUBGRADIENT;
62
63 stoppingCriterion = STOPPING_DEFAULT;
64 maxIter = 1000 ;
65 tolerance = 1e-3;
66 [m,n] = size(A) ;
67 x0 = zeros(n,1) ;
68 xG = [];
69
70 %% Initializing optimization variables
71 t_k = 1 ;
72 t_km1 = 1 ;
73 L0 = 1 ;
74 G = A'*A ;
75 nIter = 0 ;
76 c = A'*b ;
77 lambda0 = 0.99*L0*norm(c,inf) ;
78 eta = 0.6 ;
79 lambda_bar = 1e-4*lambda0 ;
80 xk = zeros(n,1) ;
81 lambda = lambda0 ;
82 L = L0 ;
83 beta = 1.5 ;
84
85 % Parse the optional inputs.
86 if (mod(length(varargin), 2) ~= 0 ),
87 error(['Extra Parameters passed to the function ''' mfilename ''' lambdast be passed in pairs.']);
88 end
89 parameterCount = length(varargin)/2;
90
91 for parameterIndex = 1:parameterCount,
92 parameterName = varargin{parameterIndex*2 - 1};
93 parameterValue = varargin{parameterIndex*2};
94 switch lower(parameterName)
95 case 'stoppingcriterion'
96 stoppingCriterion = parameterValue;
97 case 'groundtruth'
98 xG = parameterValue;
99 case 'tolerance'
100 tolerance = parameterValue;
101 case 'linesearchflag'
102 lineSearchFlag = parameterValue;
103 case 'lambda'
104 lambda_bar = parameterValue;
105 case 'maxiteration'
106 maxIter = parameterValue;
107 case 'isnonnegative'
108 isNonnegative = parameterValue;
109 case 'continuationflag'
110 continuationFlag = parameterValue;
111 case 'initialization'
112 xk = parameterValue;
113 if ~all(size(xk)==[n,1])
114 error('The dimension of the initial xk does not match.');
115 end
116 case 'eta'
117 eta = parameterValue;
118 if ( eta <= 0 || eta >= 1 )
119 disp('Line search parameter out of bounds, switching to default 0.9') ;
120 eta = 0.9 ;
121 end
122 otherwise
123 error(['The parameter ''' parameterName ''' is not recognized by the function ''' mfilename '''.']);
124 end
125 end
126 clear varargin
127
128 if stoppingCriterion==STOPPING_GROUND_TRUTH && isempty(xG)
129 error('The stopping criterion must provide the ground truth value of x.');
130 end
131
132 keep_going = 1 ;
133 nz_x = (abs(xk)> eps*10);
134 f = 0.5*norm(b-A*xk)^2 + lambda_bar * norm(xk,1);
135 xkm1 = xk;
136 while keep_going && (nIter < maxIter)
137 nIter = nIter + 1 ;
138
139 yk = xk + ((t_km1-1)/t_k)*(xk-xkm1) ;
140
141 stop_backtrack = 0 ;
142
143 temp = G*yk - c ; % gradient of f at yk
144
145 while ~stop_backtrack
146
147 gk = yk - (1/L)*temp ;
148
149 xkp1 = soft(gk,lambda/L) ;
150
151 temp1 = 0.5*norm(b-A*xkp1)^2 ;
152 temp2 = 0.5*norm(b-A*yk)^2 + (xkp1-yk)'*temp + (L/2)*norm(xkp1-yk)^2 ;
153
154 if temp1 <= temp2
155 stop_backtrack = 1 ;
156 else
157 L = L*beta ;
158 end
159
160 end
161
162 switch stoppingCriterion
163 case STOPPING_GROUND_TRUTH
164 keep_going = norm(xG-xkp1)>tolerance;
165 case STOPPING_SUBGRADIENT
166 sk = L*(yk-xkp1) + G*(xkp1-yk) ;
167 keep_going = norm(sk) > tolerance*L*max(1,norm(xkp1));
168 case STOPPING_SPARSE_SUPPORT
169 % compute the stopping criterion based on the change
170 % of the number of non-zero components of the estimate
171 nz_x_prev = nz_x;
172 nz_x = (abs(xkp1)>eps*10);
173 num_nz_x = sum(nz_x(:));
174 num_changes_active = (sum(nz_x(:)~=nz_x_prev(:)));
175 if num_nz_x >= 1
176 criterionActiveSet = num_changes_active / num_nz_x;
177 keep_going = (criterionActiveSet > tolerance);
178 end
179 case STOPPING_OBJECTIVE_VALUE
180 % compute the stopping criterion based on the relative
181 % variation of the objective function.
182 prev_f = f;
183 f = 0.5*norm(b-A*xkp1)^2 + lambda_bar * norm(xk,1);
184 criterionObjective = abs(f-prev_f)/(prev_f);
185 keep_going = (criterionObjective > tolerance);
186 case STOPPING_DUALITY_GAP
187 error('Duality gap is not a valid stopping criterion for PGBP.');
188 otherwise
189 error('Undefined stopping criterion.');
190 end
191
192 lambda = max(eta*lambda,lambda_bar) ;
193
194
195 t_kp1 = 0.5*(1+sqrt(1+4*t_k*t_k)) ;
196
197 t_km1 = t_k ;
198 t_k = t_kp1 ;
199 xkm1 = xk ;
200 xk = xkp1 ;
201 end
202
203 x_hat = xk ;
204
205 function y = soft(x,T)
206 if sum(abs(T(:)))==0
207 y = x;
208 else
209 y = max(abs(x) - T, 0);
210 y = sign(x).*y;
211 end