comparison util/classes/dictionaryMatrices/grassmannian.m @ 162:88578ec2f94a danieleb

Updated grassmannian function and minor debugs
author Daniele Barchiesi <daniele.barchiesi@eecs.qmul.ac.uk>
date Wed, 31 Aug 2011 13:52:23 +0100
parents e3035d45d014
children 1495bdfa13e9
comparison
equal deleted inserted replaced
160:e3035d45d014 162:88578ec2f94a
10 10
11 if ~exist('verb','var') || isempty(verb), verb = false; end %verbose output 11 if ~exist('verb','var') || isempty(verb), verb = false; end %verbose output
12 if ~exist('initA','var') || isempty(initA), initA = randn(n,m); end %initial matrix 12 if ~exist('initA','var') || isempty(initA), initA = randn(n,m); end %initial matrix
13 if ~exist('dd2','var') || isempty(dd2), dd2 = 0.95; end %shrinking factor 13 if ~exist('dd2','var') || isempty(dd2), dd2 = 0.95; end %shrinking factor
14 if ~exist('dd1','var') || isempty(dd1), dd1 = 0.9; end %percentage of coherences to be shrinked 14 if ~exist('dd1','var') || isempty(dd1), dd1 = 0.9; end %percentage of coherences to be shrinked
15 if ~exist('nIter','var') || isempty(nIter), nIter = 5; end %number of iterations 15 if ~exist('nIter','var') || isempty(nIter), nIter = 10; end %number of iterations
16 16
17 %% Compute svd and gramian 17 %% Main algo
18 A = normc(initA); %normalise columns 18 A = normc(initA); %normalise columns
19 [Uinit Sigma] = svd(A); %calculate svd of the matrix 19 G = A'*A; %gram matrix
20 G = A'*A; %gramian matrix
21 20
22 muMin = sqrt((m-n)/(n*(m-1))); %Lower bound on mutual coherence 21 muMin = sqrt((m-n)/(n*(m-1))); %Lower bound on mutual coherence (equiangular tight frame)
23 res = zeros(nIter,1); 22 res = zeros(nIter,1);
24 for iIter = 1:nIter 23 if verb
25 gg = sort(abs(G(:))); %sort inner products from less to ost correlated 24 fprintf(1,'Iter mu_min mu \n');
26 pos = find(abs(G(:))>gg(round(dd1*(m^2-m))) & abs(G(:)-1)>1e-6);
27 G(pos) = G(pos)*dd2;
28 [U S V] = svd(G);
29 S(n+1:end,1+n:end) = 0;
30 G = U*S*V';
31 G = diag(1./abs(sqrt(diag(G))))*G*diag(1./abs(sqrt(diag(G))));
32 gg = sort(abs(G(:)));
33 pos = find(abs(G(:))>gg(round(dd1*(m^2-m))) & abs(G(:)-1)>1e-6);
34 res(iIter) = max(abs(G(pos)));
35 if verb
36 fprintf(1,'%6i %12.8f %12.8f %12.8f \n',...
37 [iIter,muMin,mean(abs(G(pos))),max(abs(G(pos)))]);
38 end
39 end 25 end
40 26
41 [~, Sigma_gram V_gram] = svd(G); %calculate svd decomposition of gramian 27 % optimise gram matrix
42 Sigma_new = sqrt(Sigma_gram(1:n,:)).*sign(Sigma); 28 for iIter = 1:nIter
43 A = Uinit*Sigma_new*V_gram'; 29 gg = sort(abs(G(:))); %sort inner products from less to most correlated
44 A = normc(A); 30 pos = find(abs(G(:))>=gg(round(dd1*(m^2-m))) & abs(G(:)-1)>1e-6); %find large elements of gram matrix
31 G(pos) = G(pos)*dd2; %shrink large elements of gram matrix
32 [U S V] = svd(G); %compute new SVD of gram matrix
33 S(n+1:end,1+n:end) = 0; %set small eigenvalues to zero (this ensures rank(G)<=d)
34 G = U*S*V'; %update gram matrix
35 G = diag(1./abs(sqrt(diag(G))))*G*diag(1./abs(sqrt(diag(G)))); %normalise gram matrix diagonal
36 if verb
37 Geye = G - eye(size(G));
38 fprintf(1,'%6i %12.8f %12.8f \n',iIter,muMin,max(abs(Geye(:))));
39 end
40 end
41
42 % [~, Sigma_gram V_gram] = svd(G); %calculate svd decomposition of gramian
43 % Sigma_new = sqrt(Sigma_gram(1:n,:)).*sign(Sigma); %calculate singular values of dictionary
44 % A = Uinit*Sigma_new*V_gram'; %update dictionary
45 % A = normc(A); %normalise dictionary
46
47 [U S] = svd(G); %calculate svd decomposition of gramian
48 A = sqrt(S(1:n,1:n))*U(:,1:n)'; %calculate valid frame, s.t. A'*A=G
49
50 % %% Debug visualization function
51 % function plotcart2d(A)
52 % compass(A(1,:),A(2,:));