Mercurial > hg > smallbox
comparison config/SMALL_learn_config.m @ 190:759313488e7b luisf_dev
Added two config files for the 2 step dic and learn scripts; removed 'extra' folder; created init script (initial version).
author | luisf <luis.figueira@eecs.qmul.ac.uk> |
---|---|
date | Tue, 13 Mar 2012 17:33:20 +0000 |
parents | |
children | 751fa3bddd30 |
comparison
equal
deleted
inserted
replaced
187:3cc204120431 | 190:759313488e7b |
---|---|
1 | |
2 | |
3 if strcmpi(DL.toolbox,'KSVD') | |
4 param=DL.param; | |
5 param.data=Problem.b; | |
6 | |
7 D = eval([DL.name,'(param)']);%, ''t'', 5);']); | |
8 elseif strcmpi(DL.toolbox,'KSVDS') | |
9 param=DL.param; | |
10 param.data=Problem.b; | |
11 | |
12 D = eval([DL.name,'(param, ''t'', 5);']); | |
13 elseif strcmpi(DL.toolbox,'SPAMS') | |
14 | |
15 X = Problem.b; | |
16 param=DL.param; | |
17 | |
18 D = eval([DL.name,'(X, param);']); | |
19 % As some versions of SPAMS does not produce unit norm column | |
20 % dictionaries, we need to make sure that columns are normalised to | |
21 % unit lenght. | |
22 | |
23 for i = 1: size(D,2) | |
24 D(:,i)=D(:,i)/norm(D(:,i)); | |
25 end | |
26 elseif strcmpi(DL.toolbox,'SMALL') | |
27 | |
28 X = Problem.b; | |
29 param=DL.param; | |
30 | |
31 D = eval([DL.name,'(X, param);']); | |
32 % we need to make sure that columns are normalised to | |
33 % unit lenght. | |
34 | |
35 for i = 1: size(D,2) | |
36 D(:,i)=D(:,i)/norm(D(:,i)); | |
37 end | |
38 | |
39 elseif strcmpi(DL.toolbox,'TwoStepDL') | |
40 | |
41 DL=SMALL_two_step_DL(Problem, DL); | |
42 | |
43 % we need to make sure that columns are normalised to | |
44 % unit lenght. | |
45 | |
46 for i = 1: size(DL.D,2) | |
47 DL.D(:,i)=DL.D(:,i)/norm(DL.D(:,i)); | |
48 end | |
49 D = DL.D; | |
50 | |
51 elseif strcmpi(DL.toolbox,'MMbox') | |
52 | |
53 DL = wrapper_mm_DL(Problem, DL); | |
54 | |
55 % we need to make sure that columns are normalised to | |
56 % unit lenght. | |
57 | |
58 for i = 1: size(DL.D,2) | |
59 DL.D(:,i)=DL.D(:,i)/norm(DL.D(:,i)); | |
60 end | |
61 D = DL.D; | |
62 | |
63 % To introduce new dictionary learning technique put the files in | |
64 % your Matlab path. Next, unique name <TolboxID> for your toolbox needs | |
65 % to be defined and also prefferd API for toolbox functions <Preffered_API> | |
66 % | |
67 % elseif strcmpi(DL.toolbox,'<ToolboxID>') | |
68 % % This is an example of API that can be used: | |
69 % % - get training set from Problem part of structure | |
70 % % - assign parameters defined in the main program | |
71 % | |
72 % X = Problem.b; | |
73 % param=DL.param; | |
74 % | |
75 % % - Evaluate the function (DL.name - defined in the main) with | |
76 % % parameters given above | |
77 % | |
78 % D = eval([DL.name,'(<Preffered_API>);']); | |
79 | |
80 else | |
81 printf('\nToolbox has not been registered. Please change SMALL_learn file.\n'); | |
82 return | |
83 end |