comparison DL/RLS-DLA/SMALL_rlsdla 05032011.m @ 40:6416fc12f2b8

(none)
author idamnjanovic
date Mon, 14 Mar 2011 15:35:24 +0000
parents
children
comparison
equal deleted inserted replaced
39:8f734534839a 40:6416fc12f2b8
1 function Dictionary = SMALL_rlsdla(X, params)
2
3
4
5
6
7 global CODE_SPARSITY CODE_ERROR codemode
8 global MEM_LOW MEM_NORMAL MEM_HIGH memusage
9 global ompfunc ompparams exactsvd
10
11 CODE_SPARSITY = 1;
12 CODE_ERROR = 2;
13
14 MEM_LOW = 1;
15 MEM_NORMAL = 2;
16 MEM_HIGH = 3;
17
18
19 % p = randperm(size(X,2));
20
21 % coding mode %
22 %X_norm=sqrt(sum(X.^2, 1));
23 % X_norm_1=sum(abs(X));
24 % X_norm_inf=max(abs(X));
25 %[X_norm_sort, p]=sort(X_norm);%, 'descend');
26 % [X_norm_sort1, p5]=sort(X_norm_1);%, 'descend');
27
28 % if (isfield(params,'codemode'))
29 % switch lower(params.codemode)
30 % case 'sparsity'
31 % codemode = CODE_SPARSITY;
32 % thresh = params.Tdata;
33 % case 'error'
34 % codemode = CODE_ERROR;
35 % thresh = params.Edata;
36 % otherwise
37 % error('Invalid coding mode specified');
38 % end
39 % elseif (isfield(params,'Tdata'))
40 % codemode = CODE_SPARSITY;
41 % thresh = params.Tdata;
42 % elseif (isfield(params,'Edata'))
43 % codemode = CODE_ERROR;
44 % thresh = params.Edata;
45 %
46 % else
47 % error('Data sparse-coding target not specified');
48 % end
49
50 thresh = params.Edata;
51 % max number of atoms %
52
53 % if (codemode==CODE_ERROR && isfield(params,'maxatoms'))
54 % ompparams{end+1} = 'maxatoms';
55 % ompparams{end+1} = params.maxatoms;
56 % end
57
58
59 % memory usage %
60
61 if (isfield(params,'memusage'))
62 switch lower(params.memusage)
63 case 'low'
64 memusage = MEM_LOW;
65 case 'normal'
66 memusage = MEM_NORMAL;
67 case 'high'
68 memusage = MEM_HIGH;
69 otherwise
70 error('Invalid memory usage mode');
71 end
72 else
73 memusage = MEM_NORMAL;
74 end
75
76
77 % iteration count %
78
79 if (isfield(params,'iternum'))
80 iternum = params.iternum;
81 else
82 iternum = 10;
83 end
84
85
86 % omp function %
87
88 if (codemode == CODE_SPARSITY)
89 ompfunc = @omp;
90 else
91 ompfunc = @omp2;
92 end
93
94
95 % % status messages %
96 %
97 % printiter = 0;
98 % printreplaced = 0;
99 % printerr = 0;
100 % printgerr = 0;
101 %
102 % verbose = 't';
103 % msgdelta = -1;
104 %
105
106 %
107 % for i = 1:length(verbose)
108 % switch lower(verbose(i))
109 % case 'i'
110 % printiter = 1;
111 % case 'r'
112 % printiter = 1;
113 % printreplaced = 1;
114 % case 't'
115 % printiter = 1;
116 % printerr = 1;
117 % if (isfield(params,'testdata'))
118 % printgerr = 1;
119 % end
120 % end
121 % end
122 %
123 % if (msgdelta<=0 || isempty(verbose))
124 % msgdelta = -1;
125 % end
126 %
127 % ompparams{end+1} = 'messages';
128 % ompparams{end+1} = msgdelta;
129 %
130 %
131 %
132 % % compute error flag %
133 %
134 % comperr = (nargout>=3 || printerr);
135 %
136 %
137 % % validation flag %
138 %
139 % testgen = 0;
140 % if (isfield(params,'testdata'))
141 % testdata = params.testdata;
142 % if (nargout>=4 || printgerr)
143 % testgen = 1;
144 % end
145 % end
146
147 %
148 % % data norms %
149 %
150 % XtX = []; XtXg = [];
151 % if (codemode==CODE_ERROR && memusage==MEM_HIGH)
152 % XtX = colnorms_squared(data);
153 % if (testgen)
154 % XtXg = colnorms_squared(testdata);
155 % end
156 % end
157
158
159 % mutual incoherence limit %
160
161 if (isfield(params,'muthresh'))
162 muthresh = params.muthresh;
163 else
164 muthresh = 0.99;
165 end
166 if (muthresh < 0)
167 error('invalid muthresh value, must be non-negative');
168 end
169
170
171
172
173
174 % determine dictionary size %
175
176 if (isfield(params,'initdict'))
177 if (any(size(params.initdict)==1) && all(iswhole(params.initdict(:))))
178 dictsize = length(params.initdict);
179 else
180 dictsize = size(params.initdict,2);
181 end
182 end
183 if (isfield(params,'dictsize')) % this superceedes the size determined by initdict
184 dictsize = params.dictsize;
185 end
186
187 if (size(X,2) < dictsize)
188 error('Number of training signals is smaller than number of atoms to train');
189 end
190
191
192 % initialize the dictionary %
193
194 if (isfield(params,'initdict'))
195 if (any(size(params.initdict)==1) && all(iswhole(params.initdict(:))))
196 D = X(:,params.initdict(1:dictsize));
197 else
198 if (size(params.initdict,1)~=size(X,1) || size(params.initdict,2)<dictsize)
199 error('Invalid initial dictionary');
200 end
201 D = params.initdict(:,1:dictsize);
202 end
203 else
204 data_ids = find(colnorms_squared(X) > 1e-6); % ensure no zero data elements are chosen
205 perm = randperm(length(data_ids));
206 D = X(:,data_ids(perm(1:dictsize)));
207 end
208
209
210 % normalize the dictionary %
211
212 % D = normcols(D);
213 % DtD=D'*D;
214
215 err = zeros(1,iternum);
216 gerr = zeros(1,iternum);
217
218 if (codemode == CODE_SPARSITY)
219 errstr = 'RMSE';
220 else
221 errstr = 'mean atomnum';
222 end
223 %X(:,p(X_norm_sort<thresh))=0;
224 % if (iternum==4)
225 % X_im=col2imstep(X, [256 256], [8 8]);
226 % else
227 % X_im=col2imstep(X, [512 512], [8 8]);
228 % end
229 % figure(10); imshow(X_im);
230
231 %p1=p(cumsum(X_norm_sort)./[1:size(X_norm_sort,2)]>thresh);
232 %p1=p(X_norm_sort>thresh);
233 % X(:,setxor(p1,1:end))=0;
234 % X_im=col2imstep(X, [256 256], [8 8]);
235 % figure(10); imshow(X_im);
236 % if iternum==2
237 % D(:,1)=D(:,2);
238 % end
239 %p1=p1(p2(1:40000));
240 %end-min(40000, end)+1:end));%1:min(40000, end)));
241 %p1 = randperm(size(data,2));%size(data,2)
242 %data=data(:,p1);
243
244 C=(100000*thresh)*eye(dictsize);
245 % figure(11);
246 w=zeros(dictsize,1);
247 replaced=zeros(dictsize,1);
248 u=zeros(dictsize,1);
249 % dictimg = showdict(D,[8 8],round(sqrt(size(D,2))),round(sqrt(size(D,2))),'lines','highcontrast');
250 % figure(11);imshow(imresize(dictimg,2,'nearest'));
251 % pause(1);
252 lambda=0.9997%0.99986;%3+0.0001*params.linc;
253 for j=1:1
254 %data=X;
255 if size(X,2)>40000
256 p2 = randperm(size(X,2));
257
258 p2=sort(p2(1:40000));%min(floor(size(p1,2)/2),40000)));
259 size(p2,2)
260 data=X(:,p2);
261 elseif size(X,2)>0
262 %p2 = randperm(size(p1,2));
263 size(X,2)
264 data=X;
265 else
266 break;
267 end
268 % figure(1);
269 % plot(sqrt(sum(data.^2, 1)));
270 % a=size(data,2)/4;
271 % lambda0=0.99;%1-16/numS+iternum*0.0001-0.0002
272 %C(1,1)=0;
273 modi=1000;
274 for i = 1:size(data,2)
275 % if norm(data(:,i))>thresh
276 % par.multA= @(x,par) multMatr(D,x); % user function y=Ax
277 % par.multAt=@(x,par) multMatrAdj(D,x); % user function y=A'*x
278 % par.y=data(:,i);
279 % w=SolveFISTA(D,data(:,i),'lambda',0.5*thresh);
280 % w=sesoptn(zeros(dictsize,1),par.func_u, par.func_x, par.multA, par.multAt,options,par);
281 %w = SMALL_chol(D,data(:,i), 256,32, thresh);%
282 %w = sparsecode(data(:,i), D, [], [], thresh);
283 w = omp2mex(D,data(:,i),[],[],[],thresh,0,-1,-1,0);
284
285 %w(find(w<1))=0;
286 %^2;
287 % lambda(i)=1-0.001/(1+i/a);
288 % if i<a
289 % lambda(i)=1-0.001*(1-(i/a));
290 % else
291 % lambda(i)=1;
292 % end
293 % param.lambda=thresh;
294 % param.mode=2;
295 % param.L=32;
296 % w=mexLasso(data(:,i), D, param);
297 spind=find(w);
298 %replaced(spind)=replaced(spind)+1;
299 %-0.001*(1/2)^(i/a);
300 % w_sp(i)=nnz(w);
301 residual = data(:,i) - D * w;
302 %if ~isempty(spind)
303 %i
304 if (j==1)
305 C = C *(1/ lambda);
306 end
307 u = C(:,spind) * w(spind);
308
309 %spindu=find(u);
310 % v = D' * residual;
311
312 alfa = 1/(1 + w' * u);
313
314 D = D + (alfa * residual) * u';
315
316 %uut=;
317 C = C - (alfa * u)* u';
318 % lambda=(19*lambda+1)/20;
319 % DtD = DtD + alfa * ( v*u' + u*v') + alfa^2 * (residual'*residual) * uut;
320
321 % if (mod(i,modi)==0)
322 % Ximd=zeros(size(X));
323 % Ximd(:,p1((i-modi+1:i)))=data(:,i-modi+1:i);
324 %
325 % if (iternum==4)
326 % X_ima(:,:,1)=col2imstep(Ximd, [256 256], [8 8]);
327 % X_ima(:,:,2)=col2imstep(X, [256 256], [8 8]);
328 % X_ima(:,:,3)=zeros(256,256);
329 % else
330 % X_ima(:,:,1)=col2imstep(Ximd, [512 512], [8 8]);
331 % X_ima(:,:,2)=col2imstep(X, [512 512], [8 8]);
332 % X_ima(:,:,3)=zeros(512,512);
333 % end
334 %
335 % dictimg1=dictimg;
336 % dictimg = showdict(D,[8 8],...
337 % round(sqrt(size(D,2))),round(sqrt(size(D,2))),'lines','highcontrast');
338 % dictimg1=(dictimg-dictimg1);
339 %
340 % figure(2);
341 % subplot(2,2,1); imshow(X_ima); title(sprintf('%d',i));
342 % subplot(2,2,3); imshow(imresize(dictimg,2,'nearest'));
343 % subplot(2,2,4); imshow(imresize(dictimg1,2,'nearest'));
344 % subplot(2,2,2);imshow(C*(255/max(max(C))));
345 % pause(0.02);
346 % if (i>=35000)
347 % modi=100;
348 % pause
349 % end;
350 % end
351 % end
352 end
353 %p1=p1(setxor(p2,1:end));
354 %[D,cleared_atoms] = cleardict(D,X,muthresh,p1,replaced);
355 %replaced=zeros(dictsize,1);
356 % W=sparsecode(data, D, [], [], thresh);
357 % data=D*W;
358 %lambda=lambda+0.0002
359 end
360 %Gamma=mexLasso(data, D, param);
361 %err=compute_err(D,Gamma, data);
362 %[y,i]=max(err);
363 %D(:,1)=data(:,i)/norm(data(:,i));
364
365 Dictionary = D;%D(:,p);
366 % figure(3);
367 % plot(lambda);
368 % mean(lambda);
369 % figure(4+j);plot(w_sp);
370 end
371
372 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
373 % sparsecode %
374 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
375
376 function Gamma = sparsecode(data,D,XtX,G,thresh)
377
378 global CODE_SPARSITY codemode
379 global MEM_HIGH memusage
380 global ompfunc ompparams
381
382 if (memusage < MEM_HIGH)
383 Gamma = ompfunc(D,data,G,thresh,ompparams{:});
384
385 else % memusage is high
386
387 if (codemode == CODE_SPARSITY)
388 Gamma = ompfunc(D'*data,G,thresh,ompparams{:});
389
390 else
391 Gamma = ompfunc(D, data, G, thresh,ompparams{:});
392 end
393
394 end
395
396 end
397
398
399 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
400 % compute_err %
401 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
402
403
404 function err = compute_err(D,Gamma,data)
405
406 global CODE_SPARSITY codemode
407
408 if (codemode == CODE_SPARSITY)
409 err = sqrt(sum(reperror2(data,D,Gamma))/numel(data));
410 else
411 err = nnz(Gamma)/size(data,2);
412 end
413
414 end
415
416
417
418 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
419 % cleardict %
420 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
421
422
423 function [D,cleared_atoms] = cleardict(D,X,muthresh,unused_sigs,replaced_atoms)
424
425 use_thresh = 4; % at least this number of samples must use the atom to be kept
426
427 dictsize = size(D,2);
428
429 % compute error in blocks to conserve memory
430 % err = zeros(1,size(X,2));
431 % blocks = [1:3000:size(X,2) size(X,2)+1];
432 % for i = 1:length(blocks)-1
433 % err(blocks(i):blocks(i+1)-1) = sum((X(:,blocks(i):blocks(i+1)-1)-D*Gamma(:,blocks(i):blocks(i+1)-1)).^2);
434 % end
435
436 cleared_atoms = 0;
437 usecount = replaced_atoms;%sum(abs(Gamma)>1e-7, 2);
438
439 for j = 1:dictsize
440
441 % compute G(:,j)
442 Gj = D'*D(:,j);
443 Gj(j) = 0;
444
445 % replace atom
446 if ( (max(Gj.^2)>muthresh^2 || usecount(j)<use_thresh) && ~replaced_atoms(j) )
447 % [y,i] = max(err(unused_sigs));
448 D(:,j) = X(:,unused_sigs(end)) / norm(X(:,unused_sigs(end)));
449 unused_sigs = unused_sigs([1:end-1]);
450 cleared_atoms = cleared_atoms+1;
451 end
452 end
453
454 end
455
456
457
458 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
459 % misc functions %
460 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
461
462
463 function err2 = reperror2(X,D,Gamma)
464
465 % compute in blocks to conserve memory
466 err2 = zeros(1,size(X,2));
467 blocksize = 2000;
468 for i = 1:blocksize:size(X,2)
469 blockids = i : min(i+blocksize-1,size(X,2));
470 err2(blockids) = sum((X(:,blockids) - D*Gamma(:,blockids)).^2);
471 end
472
473 end
474
475
476 function Y = colnorms_squared(X)
477
478 % compute in blocks to conserve memory
479 Y = zeros(1,size(X,2));
480 blocksize = 2000;
481 for i = 1:blocksize:size(X,2)
482 blockids = i : min(i+blocksize-1,size(X,2));
483 Y(blockids) = sum(X(:,blockids).^2);
484 end
485
486 end
487
488