comparison toolboxes/AudioInpaintingToolbox/Problems/generateMissingGroupsProblem.m @ 138:56d719a5fd31 ivand_dev

Audio Inpaintin Toolbox
author Ivan Damnjanovic lnx <ivan.damnjanovic@eecs.qmul.ac.uk>
date Thu, 21 Jul 2011 14:27:47 +0100
parents
children
comparison
equal deleted inserted replaced
137:9207d56c5547 138:56d719a5fd31
1 function [problemData, solutionData] = generateMissingGroupsProblem(xFrame,problemParameters)
2 %
3 %
4 % Usage:
5 %
6 %
7 % Inputs:
8 % -
9 % -
10 % -
11 % -
12 % -
13 % -
14 % -
15 % -
16 %
17 % Outputs:
18 % -
19 % -
20 % -
21 % -
22 %
23 % Note that the CVX library is needed.
24 %
25 % -------------------
26 %
27 % Audio Inpainting toolbox
28 % Date: June 28, 2011
29 % By Valentin Emiya, Amir Adler, Maria Jafari
30 % This code is distributed under the terms of the GNU Public License version 3 (http://www.gnu.org/licenses/gpl.txt).
31
32 % Generate a clipping problem: normalize and clip a signal.
33 %
34 % Usage:
35 % [problemData, solutionData] = makeClippedSignal(x,clippingLevel,GR)
36 %
37 % Inputs:
38 % - x: input signal (may be multichannel)
39 % - clippingLevel: clipping level, between 0 and 1
40 % - GR (default: false): flag to generate an optional graphical display
41 %
42 % Outputs:
43 % - problemData.xClipped: clipped signal
44 % - problemData.IClipped: boolean vector (same size as problemData.xClipped) that indexes clipped
45 % samples
46 % - problemData.clipSizes: size of the clipped segments (not necessary
47 % for solving the problem)
48 % - solutionData.xClean: clean signal (input signal after normalization
49 %
50 % Note that the input signal is normalized to 0.9999 (-1 is not allowed in
51 % wav files) to provide problemData.xClipped and solutionData.xClean.
52
53 %function [xFrame,xFrameObs,Imiss] = aux_getFrame(xFrame,holeSize,NHoles)%,param,frameParam,kFrame)
54
55 N = length(xFrame); % frame length
56
57 % Load frame
58 % xFrame = wavread(param.wavFiles{frameParam.kFrameFile(kFrame)},frameParam.kFrameBegin(kFrame)+[0,N-1]);
59
60 % Window
61 %xFrame = xFrame.*param.wa(N).';
62
63 % Normalize
64 xFrame = xFrame/max(abs(xFrame));
65
66 % Build random measurement matrix with NHoles of length holeSize
67 [M IMiss] = makeRandomMeasurementMatrix(N,problemParameters.NHoles,problemParameters.holeSize);
68 xFrameObs = xFrame;
69 xFrameObs(IMiss) = 0;
70
71 problemData.x = xFrameObs;
72 problemData.IMiss = IMiss;
73 solutionData.xClean = xFrame;
74 return
75
76
77 function [M Im] = makeRandomMeasurementMatrix(N,NMissingBlocks,blockSize)
78 % [M Im] = makeRandomMeasurementMatrix(N,NMissingBlocks,blockSize)
79 % Create a random measurement matrix M where NMissingBlocks blocks with
80 % size blockSize each are randomly inserted. The boolean vector Im
81 % indicates the location of the NMissingBlocks*blockSize missing
82 % samples.
83 % If the number of missing samples is large, there may be very few solutions
84 % so that after a few failing attempts, the results is generated in a deterministic
85 % way (groups separated by one sample). This happens for example when the number of
86 % missing samples is close to half the frame length, for isolated samples (blockSize=1).
87
88 nTry = 1;
89 while true
90 try
91 Im = false(N,1);
92
93 possibleStart = 1:N-blockSize+1;
94
95 for k=1:NMissingBlocks
96 if isempty(possibleStart)
97 error('makeRandomMeasurementMatrix:tooMuchMissingSamples',...
98 'Too much missing segments');
99 end
100 I = ceil(rand*(length(possibleStart)-1));
101 I = possibleStart(I);
102 Im(I+(0:blockSize-1)) = true;
103 possibleStart(possibleStart>=I-blockSize & possibleStart<=I+blockSize) = [];
104 end
105 break
106 catch
107 fprintf('makeRandomMeasurementMatrix:retry (%d)\n',nTry);
108 nTry = nTry+1;
109 if nTry>10
110 Im = [true(blockSize,NMissingBlocks);false(1,NMissingBlocks)];
111 Im = Im(:);
112 while length(Im)<N
113 N0 = sum(~Im);
114 I0 = find(~Im,randi(N0),'first');
115 I0 = I0(end);
116 Im = [Im(1:I0);false;Im(I0+1:end)];
117 end
118 Im = circshift(Im,randi(N));
119 break;
120 end
121 end
122 end
123 M = eye(N);
124 M(Im,:) = [];
125
126 return