comparison toolboxes/AudioInpaintingToolbox/Problems/generateDeclippingProblem.m @ 138:56d719a5fd31 ivand_dev

Audio Inpaintin Toolbox
author Ivan Damnjanovic lnx <ivan.damnjanovic@eecs.qmul.ac.uk>
date Thu, 21 Jul 2011 14:27:47 +0100
parents
children
comparison
equal deleted inserted replaced
137:9207d56c5547 138:56d719a5fd31
1 function [problemData, solutionData] = generateDeclippingProblem(x,clippingLevel,GR)
2 %
3 %
4 % Usage:
5 %
6 %
7 % Inputs:
8 % -
9 % -
10 % -
11 % -
12 % -
13 % -
14 % -
15 % -
16 %
17 % Outputs:
18 % -
19 % -
20 % -
21 % -
22 %
23 % Note that the CVX library is needed.
24 %
25 % -------------------
26 %
27 % Audio Inpainting toolbox
28 % Date: June 28, 2011
29 % By Valentin Emiya, Amir Adler, Maria Jafari
30 % This code is distributed under the terms of the GNU Public License version 3 (http://www.gnu.org/licenses/gpl.txt).
31 % Generate a clipping problem: normalize and clip a signal.
32 %
33 % Usage:
34 % [problemData, solutionData] = makeClippedSignal(x,clippingLevel,GR)
35 %
36 % Inputs:
37 % - x: input signal (may be multichannel)
38 % - clippingLevel: clipping level, between 0 and 1
39 % - GR (default: false): flag to generate an optional graphical display
40 %
41 % Outputs:
42 % - problemData.x: clipped signal
43 % - problemData.IMiss: boolean vector (same size as problemData.x) that indexes clipped
44 % samples
45 % - problemData.clipSizes: size of the clipped segments (not necessary
46 % for solving the problem)
47 % - solutionData.xClean: clean signal (input signal after normalization
48 %
49 % Note that the input signal is normalized to 0.9999 (-1 is not allowed in
50 % wav files) to provide problemData.x and solutionData.xClean.
51
52 if nargin<3 || isempty(GR)
53 GR = false;
54 end
55
56 %% Normalization
57 xMax = 0.9999;
58 solutionData.xClean = x/max(abs(x(:)))*xMax;
59 clippingLevel = clippingLevel*xMax;
60
61 %% Clipping (hard threshold)
62 problemData.x = min(max(solutionData.xClean,-clippingLevel),clippingLevel);
63 problemData.IMiss = abs(problemData.x)>=clippingLevel; % related indices
64
65 %% Size of the clipped segments
66 problemData.clipSizes = diff(problemData.IMiss);
67 if problemData.clipSizes(find(problemData.clipSizes,1,'first'))==-1,problemData.clipSizes = [1;problemData.clipSizes]; end
68 if problemData.clipSizes(find(problemData.clipSizes,1,'last'))==1,problemData.clipSizes = [problemData.clipSizes;-1]; end
69 problemData.clipSizes = diff(find(problemData.clipSizes));
70 problemData.clipSizes = problemData.clipSizes(1:2:end);
71
72 %% Optional graphical display
73 if GR
74
75 % Plot histogram of the sizes of the clipped segments
76 if ~isempty(problemData.clipSizes)
77 figure
78 hist(problemData.clipSizes,1:max(problemData.clipSizes))
79 title('Size of missing segments')
80 xlabel('Size'),ylabel('# of segments')
81 end
82
83 t = (0:length(solutionData.xClean)-1); % time scale in samples
84
85 % Plot original and clipped signals
86 figure
87 plot(t,solutionData.xClean,'',t,problemData.x,'')
88 legend('original','clipped')
89
90 % Scatter plot between original and clipped signals
91 figure
92 plot(solutionData.xClean,problemData.x,'.')
93 xlabel('Original signal'),ylabel('Clipped signal')
94
95 % Spectrograms
96 N = 512;
97 w = hann(N);
98 fs = 1;
99 NOverlap = round(.8*N);
100 nfft = 2^nextpow2(N)*2*2;
101 figure
102 subplot(3,3,[1,4])
103 spectrogram(solutionData.xClean,w,NOverlap,nfft,fs,'yaxis')
104 title('Original')
105 xlim(t([1,end]))
106 cl = get(gca,'clim');
107 set(gca,'clim',cl);
108 subplot(3,3,[1,4]+1)
109 spectrogram(problemData.x,w,NOverlap,nfft,fs,'yaxis')
110 title('Clipped')
111 set(gca,'clim',cl);
112 subplot(3,3,[1,4]+2)
113 spectrogram(solutionData.xClean-problemData.x,w,NOverlap,nfft,fs,'yaxis')
114 title('Error (=original-clipped)')
115 set(gca,'clim',cl);
116 subplot(3,3,7)
117 plot(t,solutionData.xClean,'');xlim(t([1,end]))
118 subplot(3,3,8)
119 plot(t,solutionData.xClean,'',t,problemData.x,'');xlim(t([1,end]))
120 subplot(3,3,9)
121 plot(t,solutionData.xClean-problemData.x,'');xlim(t([1,end]))
122 end
123
124 return