comparison solvers/SMALL_ompGabor/ompcore.c @ 140:31d2864dfdd4 ivand_dev

Audio Impainting additional constraints with cvx added
author Ivan Damnjanovic lnx <ivan.damnjanovic@eecs.qmul.ac.uk>
date Mon, 25 Jul 2011 17:27:05 +0100
parents
children
comparison
equal deleted inserted replaced
139:4bd6856a7128 140:31d2864dfdd4
1 /**************************************************************************
2 *
3 * File name: ompcore.c
4 *
5 * Ron Rubinstein
6 * Computer Science Department
7 * Technion, Haifa 32000 Israel
8 * ronrubin@cs
9 *
10 * Last Updated: 25.8.2009
11 *
12 *************************************************************************/
13
14
15 #include "ompcore.h"
16 #include "omputils.h"
17 #include "ompprof.h"
18 #include "myblas.h"
19 #include <math.h>
20 #include <string.h>
21
22
23
24 /******************************************************************************
25 * *
26 * Batch-OMP Implementation *
27 * *
28 ******************************************************************************/
29
30 mxArray* ompcore(double D[], double x[], double DtX[], double XtX[], double G[], mwSize n, mwSize m, mwSize L,
31 int T, double eps, int gamma_mode, int profile, double msg_delta, int erroromp)
32 {
33
34 profdata pd;
35 mxArray *Gamma;
36 mwIndex i, j, signum, pos, *ind, *gammaIr, *gammaJc, gamma_count;
37 mwSize allocated_coefs, allocated_cols;
38 int DtX_specified, XtX_specified, batchomp, standardomp, *selected_atoms;
39 double *alpha, *r, *Lchol, *c, *Gsub, *Dsub, sum, *gammaPr, *tempvec1, *tempvec2;
40 double eps2, resnorm, delta, deltaprev, secs_remain;
41 int mins_remain, hrs_remain;
42 clock_t lastprint_time, starttime;
43
44
45
46 /*** status flags ***/
47
48 DtX_specified = (DtX!=0); /* indicates whether D'*x was provided */
49 XtX_specified = (XtX!=0); /* indicates whether sum(x.*x) was provided */
50
51 standardomp = (G==0); /* batch-omp or standard omp are selected depending on availability of G */
52 batchomp = !standardomp;
53
54
55
56 /*** allocate output matrix ***/
57
58
59 if (gamma_mode == FULL_GAMMA) {
60
61 /* allocate full matrix of size m X L */
62
63 Gamma = mxCreateDoubleMatrix(m, L, mxREAL);
64 gammaPr = mxGetPr(Gamma);
65 gammaIr = 0;
66 gammaJc = 0;
67 }
68 else {
69
70 /* allocate sparse matrix with room for allocated_coefs nonzeros */
71
72 /* for error-omp, begin with L*sqrt(n)/2 allocated nonzeros, otherwise allocate L*T nonzeros */
73 allocated_coefs = erroromp ? (mwSize)(ceil(L*sqrt((double)n)/2.0) + 1.01) : L*T;
74 Gamma = mxCreateSparse(m, L, allocated_coefs, mxREAL);
75 gammaPr = mxGetPr(Gamma);
76 gammaIr = mxGetIr(Gamma);
77 gammaJc = mxGetJc(Gamma);
78 gamma_count = 0;
79 gammaJc[0] = 0;
80 }
81
82
83 /*** helper arrays ***/
84
85 alpha = (double*)mxMalloc(m*sizeof(double)); /* contains D'*residual */
86 ind = (mwIndex*)mxMalloc(n*sizeof(mwIndex)); /* indices of selected atoms */
87 selected_atoms = (int*)mxMalloc(m*sizeof(int)); /* binary array with 1's for selected atoms */
88 c = (double*)mxMalloc(n*sizeof(double)); /* orthogonal projection result */
89
90 /* current number of columns in Dsub / Gsub / Lchol */
91 allocated_cols = erroromp ? (mwSize)(ceil(sqrt((double)n)/2.0) + 1.01) : T;
92
93 /* Cholesky decomposition of D_I'*D_I */
94 Lchol = (double*)mxMalloc(n*allocated_cols*sizeof(double));
95
96 /* temporary vectors for various computations */
97 tempvec1 = (double*)mxMalloc(m*sizeof(double));
98 tempvec2 = (double*)mxMalloc(m*sizeof(double));
99
100 if (batchomp) {
101 /* matrix containing G(:,ind) - the columns of G corresponding to the selected atoms, in order of selection */
102 Gsub = (double*)mxMalloc(m*allocated_cols*sizeof(double));
103 }
104 else {
105 /* matrix containing D(:,ind) - the selected atoms from D, in order of selection */
106 Dsub = (double*)mxMalloc(n*allocated_cols*sizeof(double));
107
108 /* stores the residual */
109 r = (double*)mxMalloc(n*sizeof(double));
110 }
111
112 if (!DtX_specified) {
113 /* contains D'*x for the current signal */
114 DtX = (double*)mxMalloc(m*sizeof(double));
115 }
116
117
118
119 /*** initializations for error omp ***/
120
121 if (erroromp) {
122 eps2 = eps*eps; /* compute eps^2 */
123 if (T<0 || T>n) { /* unspecified max atom num - set max atoms to n */
124 T = n;
125 }
126 }
127
128
129
130 /*** initialize timers ***/
131
132 initprofdata(&pd); /* initialize profiling counters */
133 starttime = clock(); /* record starting time for eta computations */
134 lastprint_time = starttime; /* time of last status display */
135
136
137
138 /********************** perform omp for each signal **********************/
139
140
141
142 for (signum=0; signum<L; ++signum) {
143
144
145 /* initialize residual norm and deltaprev for error-omp */
146
147 if (erroromp) {
148 if (XtX_specified) {
149 resnorm = XtX[signum];
150 }
151 else {
152 resnorm = dotprod(x+n*signum, x+n*signum, n);
153 addproftime(&pd, XtX_TIME);
154 }
155 deltaprev = 0; /* delta tracks the value of gamma'*G*gamma */
156 }
157 else {
158 /* ignore residual norm stopping criterion */
159 eps2 = 0;
160 resnorm = 1;
161 }
162
163
164 if (resnorm>eps2 && T>0) {
165
166 /* compute DtX */
167
168 if (!DtX_specified) {
169 matT_vec(1, D, x+n*signum, DtX, n, m);
170 addproftime(&pd, DtX_TIME);
171 }
172
173
174 /* initialize alpha := DtX */
175
176 memcpy(alpha, DtX + m*signum*DtX_specified, m*sizeof(double));
177
178
179 /* mark all atoms as unselected */
180
181 for (i=0; i<m; ++i) {
182 selected_atoms[i] = 0;
183 }
184
185 }
186
187
188 /* main loop */
189
190 i=0;
191 while (resnorm>eps2 && i<T) {
192
193 /* index of next atom */
194
195 pos = maxabs(alpha, m);
196 addproftime(&pd, MAXABS_TIME);
197
198
199 /* stop criterion: selected same atom twice, or inner product too small */
200
201 if (selected_atoms[pos] || alpha[pos]*alpha[pos]<1e-14) {
202 break;
203 }
204
205
206 /* mark selected atom */
207
208 ind[i] = pos;
209 selected_atoms[pos] = 1;
210
211
212 /* matrix reallocation */
213
214 if (erroromp && i>=allocated_cols) {
215
216 allocated_cols = (mwSize)(ceil(allocated_cols*MAT_INC_FACTOR) + 1.01);
217
218 Lchol = (double*)mxRealloc(Lchol,n*allocated_cols*sizeof(double));
219
220 batchomp ? (Gsub = (double*)mxRealloc(Gsub,m*allocated_cols*sizeof(double))) :
221 (Dsub = (double*)mxRealloc(Dsub,n*allocated_cols*sizeof(double))) ;
222 }
223
224
225 /* append column to Gsub or Dsub */
226
227 if (batchomp) {
228 memcpy(Gsub+i*m, G+pos*m, m*sizeof(double));
229 }
230 else {
231 memcpy(Dsub+i*n, D+pos*n, n*sizeof(double));
232 }
233
234
235 /*** Cholesky update ***/
236
237 if (i==0) {
238 *Lchol = 1;
239 }
240 else {
241
242 /* incremental Cholesky decomposition: compute next row of Lchol */
243
244 if (standardomp) {
245 matT_vec(1, Dsub, D+n*pos, tempvec1, n, i); /* compute tempvec1 := Dsub'*d where d is new atom */
246 addproftime(&pd, DtD_TIME);
247 }
248 else {
249 vec_assign(tempvec1, Gsub+i*m, ind, i); /* extract tempvec1 := Gsub(ind,i) */
250 }
251 backsubst('L', Lchol, tempvec1, tempvec2, n, i); /* compute tempvec2 = Lchol \ tempvec1 */
252 for (j=0; j<i; ++j) { /* write tempvec2 to end of Lchol */
253 Lchol[j*n+i] = tempvec2[j];
254 }
255
256 /* compute Lchol(i,i) */
257 sum = 0;
258 for (j=0; j<i; ++j) { /* compute sum of squares of last row without Lchol(i,i) */
259 sum += SQR(Lchol[j*n+i]);
260 }
261 if ( (1-sum) <= 1e-14 ) { /* Lchol(i,i) is zero => selected atoms are dependent */
262 break;
263 }
264 Lchol[i*n+i] = sqrt(1-sum);
265 }
266
267 addproftime(&pd, LCHOL_TIME);
268
269 i++;
270
271
272 /* perform orthogonal projection and compute sparse coefficients */
273
274 vec_assign(tempvec1, DtX + m*signum*DtX_specified, ind, i); /* extract tempvec1 = DtX(ind) */
275 cholsolve('L', Lchol, tempvec1, c, n, i); /* solve LL'c = tempvec1 for c */
276 addproftime(&pd, COMPCOEF_TIME);
277
278
279 /* update alpha = D'*residual */
280
281 if (standardomp) {
282 mat_vec(-1, Dsub, c, r, n, i); /* compute r := -Dsub*c */
283 vec_sum(1, x+n*signum, r, n); /* compute r := x+r */
284
285
286 /*memcpy(r, x+n*signum, n*sizeof(double)); /* assign r := x */
287 /*mat_vec1(-1, Dsub, c, 1, r, n, i); /* compute r := r-Dsub*c */
288
289 addproftime(&pd, COMPRES_TIME);
290 matT_vec(1, D, r, alpha, n, m); /* compute alpha := D'*r */
291 addproftime(&pd, DtR_TIME);
292
293 /* update residual norm */
294 if (erroromp) {
295 resnorm = dotprod(r, r, n);
296 addproftime(&pd, UPDATE_RESNORM_TIME);
297 }
298 }
299 else {
300 mat_vec(1, Gsub, c, tempvec1, m, i); /* compute tempvec1 := Gsub*c */
301 memcpy(alpha, DtX + m*signum*DtX_specified, m*sizeof(double)); /* set alpha = D'*x */
302 vec_sum(-1, tempvec1, alpha, m); /* compute alpha := alpha - tempvec1 */
303 addproftime(&pd, UPDATE_DtR_TIME);
304
305 /* update residual norm */
306 if (erroromp) {
307 vec_assign(tempvec2, tempvec1, ind, i); /* assign tempvec2 := tempvec1(ind) */
308 delta = dotprod(c,tempvec2,i); /* compute c'*tempvec2 */
309 resnorm = resnorm - delta + deltaprev; /* residual norm update */
310 deltaprev = delta;
311 addproftime(&pd, UPDATE_RESNORM_TIME);
312 }
313 }
314 }
315
316
317 /*** generate output vector gamma ***/
318
319 if (gamma_mode == FULL_GAMMA) { /* write the coefs in c to their correct positions in gamma */
320 for (j=0; j<i; ++j) {
321 gammaPr[m*signum + ind[j]] = c[j];
322 }
323 }
324 else {
325 /* sort the coefs by index before writing them to gamma */
326 quicksort(ind,c,i);
327 addproftime(&pd, INDEXSORT_TIME);
328
329 /* gamma is full - reallocate */
330 if (gamma_count+i >= allocated_coefs) {
331
332 while(gamma_count+i >= allocated_coefs) {
333 allocated_coefs = (mwSize)(ceil(GAMMA_INC_FACTOR*allocated_coefs) + 1.01);
334 }
335
336 mxSetNzmax(Gamma, allocated_coefs);
337 mxSetPr(Gamma, mxRealloc(gammaPr, allocated_coefs*sizeof(double)));
338 mxSetIr(Gamma, mxRealloc(gammaIr, allocated_coefs*sizeof(mwIndex)));
339
340 gammaPr = mxGetPr(Gamma);
341 gammaIr = mxGetIr(Gamma);
342 }
343
344 /* append coefs to gamma and update the indices */
345 for (j=0; j<i; ++j) {
346 gammaPr[gamma_count] = c[j];
347 gammaIr[gamma_count] = ind[j];
348 gamma_count++;
349 }
350 gammaJc[signum+1] = gammaJc[signum] + i;
351 }
352
353
354
355 /*** display status messages ***/
356
357 if (msg_delta>0 && (clock()-lastprint_time)/(double)CLOCKS_PER_SEC >= msg_delta)
358 {
359 lastprint_time = clock();
360
361 /* estimated remainig time */
362 secs2hms( ((L-signum-1)/(double)(signum+1)) * ((lastprint_time-starttime)/(double)CLOCKS_PER_SEC) ,
363 &hrs_remain, &mins_remain, &secs_remain);
364
365 mexPrintf("omp: signal %d / %d, estimated remaining time: %02d:%02d:%05.2f\n",
366 signum+1, L, hrs_remain, mins_remain, secs_remain);
367 mexEvalString("drawnow;");
368 }
369
370 }
371
372 /* end omp */
373
374
375
376 /*** print final messages ***/
377
378 if (msg_delta>0) {
379 mexPrintf("omp: signal %d / %d\n", signum, L);
380 }
381
382 if (profile) {
383 printprofinfo(&pd, erroromp, batchomp, L);
384 }
385
386
387
388 /* free memory */
389
390 if (!DtX_specified) {
391 mxFree(DtX);
392 }
393 if (standardomp) {
394 mxFree(r);
395 mxFree(Dsub);
396 }
397 else {
398 mxFree(Gsub);
399 }
400 mxFree(tempvec2);
401 mxFree(tempvec1);
402 mxFree(Lchol);
403 mxFree(c);
404 mxFree(selected_atoms);
405 mxFree(ind);
406 mxFree(alpha);
407
408 return Gamma;
409 }