comparison Problems/Cardiac_MRI_problem.m @ 47:2953097411d4

(none)
author idamnjanovic
date Mon, 14 Mar 2011 15:43:24 +0000
parents
children
comparison
equal deleted inserted replaced
46:6a37442514c5 47:2953097411d4
1 function data = Cardiac_MRI_Problem(varargin)
2 % CHANGE!!!!PROB503 Shepp-Logan phantom, partial Fourier with sample mask,
3 % complex domain, total variation.
4 %
5 % PROB503 creates a problem structure. The generated signal will
6 % consist of a N = 256 by N Shepp-Logan phantom. The signal is
7 % sampled at random locations in frequency domain generated
8 % according to a probability density function.
9 %
10 % The following optional arguments are supported:
11 %
12 % PROB503('n',N,flags) is the same as above, but with a
13 % phantom of size N by N. The 'noseed' flag can be specified to
14 % suppress initialization of the random number generators. Both
15 % the parameter pair and flags can be omitted.
16 %
17 % Examples:
18 % P = prob503; % Creates the default 503 problem.
19 %
20 % References:
21 %
22 % [LustDonoPaul:2007] M. Lustig, D.L. Donoho and J.M. Pauly,
23 % Sparse MRI: The application of compressed sensing for rapid MR
24 % imaging, Submitted to Magnetic Resonance in Medicine, 2007.
25 %
26 % [sparsemri] M. Lustig, SparseMRI,
27 % http://www.stanford.edu/~mlustig/SparseMRI.html
28 %
29 % See also GENERATEPROBLEM.
30 %
31 %MATLAB SPARCO Toolbox.
32
33 % Copyright 2008, Ewout van den Berg and Michael P. Friedlander
34 % http://www.cs.ubc.ca/labs/scl/sparco
35 % $Id: prob503.m 1040 2008-06-26 20:29:02Z ewout78 $
36
37 % Parse parameters and set problem name
38
39 [opts,varg] = parseDefaultOpts(varargin{:});
40 [parm,varg] = parseOptions(varg,{'noseed'},{'n','fold','sigma','slice'});
41 n = getOption(parm,'n',256);
42 info.name = 'Cardiac_MRI';
43 opts.show = 1;
44
45
46 fold = getOption(parm,'fold', 6); % undersampling level
47 sigma = getOption(parm,'sigma', 0.05);; % noise level
48 z = getOption(parm,'slice', 5);; % slice number (1-10)
49 szt = 20; % number of time samples
50
51 % Return problem name if requested
52 if opts.getname, data = info.name; return; end;
53
54 % Initialize random number generators
55 if (~parm.noseed), randn('state',0); rand('twister',2000); end;
56
57 % Set up the data
58 % if allowed use variable density
59 %pdf = genPDF([n,n],5,0.1,2,0.1,0);
60
61
62
63 %load heart images
64 FS=filesep;
65 TMPpath=pwd;
66 [pathstr1, name, ext, versn] = fileparts(which('SMALLboxSetup.m'));
67 cd([pathstr1,FS,'data',FS,'images',FS,'Cardiac_MRI_dataset',FS,'Images']);
68 [filename,pathname] = uigetfile({'*.mat;'},'Select a patient MRI image set');
69 [pathstr, name, ext, versn] = fileparts(filename);
70 load(filename);
71 data.name=name;
72 cd(TMPpath);
73
74 % Set up the problem
75
76 % Get 3D matrix of heart images (size 256x256, 20 frames) and stack them to
77 % 2D matrix (256 x 256*20)
78 data.signal = reshape(sol_yxzt(:,:,z,:), [n n*szt]);
79
80 % make a noise matrix
81
82 noise_var=sqrt(sigma*var(reshape(data.signal, [n*n*szt 1])));
83 data.noise = randn(n,n*szt)*noise_var + sqrt(-1)*randn(n,n*szt)*noise_var;
84
85 % make a mask of random lines in phase encode and time domain random - vector
86 % of 0 and 1 of size n*szt multiplied with vector of 1 of size n
87
88 mask = rand(n*szt,1);
89 mask(mask>(1-1/fold))=1;
90 mask(mask<=(1-1/fold))=0;
91 mask=(mask*ones(1,n))';
92 data.op.mask = opMask(mask);
93 data.op.padding = opPadding([n,n*szt],[n,n*szt]);
94
95 % make an fft 2D dictionary. It will do 2D fft on evry image in the stack
96 data.op.fft2d = opKron(opDiag(szt,1), opFFT2C(n,n));
97
98 % make measurement operator mask*padding*fft2d
99 data.M = opFoG(data.op.mask, data.op.padding, ...
100 data.op.fft2d);
101
102 % make a mesurement vector b = M* (signal + noise) where s+n is stack to 1d vector
103 data.b = data.M(reshape(data.signal + data.noise,[n*n*szt,1]),1);
104
105
106 data = completeOps(data);
107
108 % Additional information
109 info.title = 'Cardiac-MRI';
110 info.thumb = 'figcardiacProblem';
111 info.citations = {'LustDonoPaul:2007','sparsemri'};
112 info.fig{1}.title = 'Cardiac MRI';
113 % info.fig{1}.filename = 'figProblemCardiac';
114 % info.fig{2}.title = 'Probability density function';
115 % info.fig{2}.filename = 'figProblem503PDF';
116 % info.fig{3}.title = 'Sampling mask';
117 % info.fig{3}.filename = 'figProblem503Mask';
118
119 % Set the info field in data
120 data.info = info;
121 opts.figinc=1;
122 % Plot figures
123 if opts.update || opts.show
124
125 %figure(opts.figno); opts.figno = opts.figno + opts.figinc;
126
127 mov=reshape(data.signal/500, [n n szt]);
128
129 implay(mov);
130 clear mov;
131
132 %updateFigure(opts, info.fig{1}.title, info.fig{1}.filename);
133
134 movMeas=reshape(abs(data.A(data.b,2))/500, [n n szt]);
135 implay(movMeas);
136 clear movMeas;
137 % figure(opts.figno); opts.figno = opts.figno + opts.figinc;
138 % imagesc(pdf), colormap gray;
139 % updateFigure(opts, info.fig{2}.title, info.fig{2}.filename)
140
141 implay(reshape(mask, [n n szt]));
142
143 % figure(opts.figno); opts.figno = opts.figno + opts.figinc;
144 % imagesc(mask), colormap gray
145 % updateFigure(opts, info.fig{3}.title, info.fig{3}.filename)
146 %
147 % if opts.update
148 % mn = min(min(data.signal + real(data.noise)));
149 % mx = max(max(data.signal + real(data.noise)));
150 % P = (data.signal + real(data.noise) - mn) / (mx - mn);
151 % P = scaleImage(P,128,128);
152 % P = P(1:2:end,1:2:end,:);
153 % thumbwrite(P, info.thumb, opts);
154 % end
155 end