comparison util/classes/dictionaryMatrices/rotatematrix.m @ 169:290cca7d3469 danieleb

Added dictionary decorrelation functions and test script for ICASSP paper.
author Daniele Barchiesi <daniele.barchiesi@eecs.qmul.ac.uk>
date Thu, 29 Sep 2011 09:46:52 +0100
parents
children 68fb71aa5339
comparison
equal deleted inserted replaced
168:ff866a412be5 169:290cca7d3469
1 function [Dhat cost W] = rotatematrix(D,Phi,method,param)
2 %
3 %
4 %
5 % REFERENCE
6 % M.D. Plumbley, Geometrical Methods for Non-Negative ICA: Manifolds, Lie
7 % Groups and Toral Subalgebra, Neurocomputing
8 if ~nargin, testrotatematrix; return, end
9
10
11 if ~exist('method','var') || isempty(method), method = 'unconstrained'; end
12
13 J = @(W) 0.5*norm(D-W*Phi,'fro');
14 cost = zeros(param.nIter,1);
15
16 W = eye(size(Phi,1));
17 t = 0;
18 Gprev = 0;
19 Hprev = 0;
20 for i=1:param.nIter
21 cost(i) = J(W);
22 grad = (W*Phi-D)*Phi';
23 switch method
24 case 'unconstrained' % gradient descent
25 eta = param.step;
26 W = W - eta*grad; % update W by steepest descent
27 case 'tangent' % self correcting tangent
28 eta = param.step;
29 mu = param.reg;
30 W = W - 0.5*eta*(grad - W*grad'*W + mu*W*(W'*W-eye(size(W))));
31 case 'steepestlie'
32 eta = param.step;
33 B = 2*skew(grad*W'); % calculate gradient in lie algebra
34 W = expm(-eta*B)*W; % update W by steepest descent
35 case 'linesearchlie'
36 B = 2*skew(grad*W'); % calculate gradient in lie algebra
37 H = -B; % calculate direction as negative gradient
38 t = searchline(J,H,W,t);% line search in one-parameter lie subalgebra
39 W = expm(t*H)*W; % update W by line search
40 case 'conjgradlie'
41 G = 2*skew(grad*W'); % calculate gradient in lie algebra
42 H = -G + polakRibiere(G,Gprev)*Hprev; %calculate conjugate gradient direction
43 t = searchline(J,H,W,t);% line search in one-parameter lie subalgebra
44 W = expm(t*H)*W; % update W by line search
45 Hprev = H; % % save search direction
46 Gprev = G; % % save gradient
47 end
48 end
49 Dhat = W*Phi;
50 end
51 % function C = matcomm(A,B)
52 % %Matrix commutator
53 % C = A*B-B*A;
54
55 function gamma = polakRibiere(G,Gprev)
56 gamma = G(:)'*(G(:)-Gprev(:))/(norm(Gprev(:))^2);
57 if isnan(gamma) || isinf(gamma)
58 gamma = 0;
59 end
60 end
61
62 function t = searchline(J,H,W,t)
63 t = fminsearch(@(x) J(expm(x*H)*W),t);
64 end
65
66 function B = skew(A)
67 B = 0.5*(A - A');
68 end
69
70
71 function testrotatematrix
72 clear, clc, close all
73 n = 256;
74 m = 512;
75 disp('A random matrix...');
76 Phi = randn(n,m);
77 disp('And its rotated mate...');
78 Qtrue = expm(skew(randn(n)));
79 D = Qtrue*Phi;
80 disp('Now, lets try to find the right rotation...');
81 param.nIter = 1000;
82 param.step = 0.001;
83
84 cost = zeros(param.nIter,4);
85 [~, cost(:,1)] = rotatematrix(D,Phi,'unconstrained',param);
86 [~, cost(:,2)] = rotatematrix(D,Phi,'steepestlie',param);
87 [~, cost(:,3)] = rotatematrix(D,Phi,'linesearchlie',param);
88 [~, cost(:,4)] = rotatematrix(D,Phi,'conjgradlie',param);
89
90 figure, plot(cost)
91 set(gca,'XScale','log','Yscale','log')
92 legend({'uncons','settpestlie','linesearchlie','conjgradlie'})
93 grid on
94 xlabel('number of iterations')
95 ylabel('J(W)')
96 end