Mercurial > hg > smallbox
comparison toolboxes/alps/ALPS/AlgebraicPursuit.m @ 159:23763c5fbda5 danieleb
Merge
author | Daniele Barchiesi <daniele.barchiesi@eecs.qmul.ac.uk> |
---|---|
date | Wed, 31 Aug 2011 10:43:32 +0100 |
parents | 0de08f68256b |
children |
comparison
equal
deleted
inserted
replaced
158:855aa3288394 | 159:23763c5fbda5 |
---|---|
1 function [x_hat, numiter, time, x_path] = AlgebraicPursuit(y, Phi, K, varargin) | |
2 % ========================================================================= | |
3 % Algebraic Pursuit algorithms - Beta Version | |
4 % ========================================================================= | |
5 % Algebraic Pursuit (ALPS) algorithms are accelerated hard thresholding methods | |
6 % on sparse recovery of linear inverse systems. In particular, let | |
7 % Phi : M x N real matrix (M < N) | |
8 % x* : N x 1 K-sparse data vector | |
9 % n : N x 1 additive noise vector | |
10 % then, y = Phi x* + n is the undersampled M x 1 measurement vector. ALPS | |
11 % solve the following minimization problem | |
12 % minimize ||y - Phi x||^2 subject to x is K-sparse vector. | |
13 % | |
14 % Detailed discussion on the algorithm can be found in | |
15 % [1] "On Accelerated Hard Thresholding Methods for Sparse Approximation", written | |
16 % by Volkan Cevher, Technical Report, 2011. | |
17 % ========================================================================= | |
18 % INPUT ARGUMENTS: | |
19 % y M x 1 undersampled measurement vector. | |
20 % Phi M x N regression matrix. | |
21 % K Sparsity of underlying vector x* or desired | |
22 % sparsity of solution. | |
23 % varargin Set of parameters. These are: | |
24 % | |
25 % memory,... Memory (momentum) of proposed algorithm. | |
26 % Possible values are 0,1,'infty' for memoryless, | |
27 % one memory and infinity memory ALPS, | |
28 % respectively. Default value: memory = 0. | |
29 % tol,... Early stopping tolerance. Default value: tol = | |
30 % 1-e5. | |
31 % ALPSiters,... Maximum number of algorithm iterations. Default | |
32 % value: 300. | |
33 % mode, ... According to [1], possible values are | |
34 % [0,1,2,4,5,6]. This value comes from the binary | |
35 % representation of the parameters: | |
36 % (solveNewtob, gradientDescentx, solveNewtonx), | |
37 % which are explained next. Default value = 0. | |
38 % mu,... Variable that controls the step size selection. | |
39 % When mu = 0, step size is computed adaptively | |
40 % per iteration. Default value: mu = 0. | |
41 % tau,... Variable that controls the momentum in | |
42 % non-memoryless case. Ignored in memoryless | |
43 % case. User can insert as value a function handle on tau. | |
44 % Description given below. Default value: tau = -1. | |
45 % CGiters,... Maximum iterations for Conjugate-Gradients method. | |
46 % CGtol,... Tolerance variable for Conjugate-Gradients method. | |
47 % verbose verbose = 1 prints out execution infromation. | |
48 % ========================================================================= | |
49 % DESCRIPTION OF MODE VARIABLE: | |
50 % solveNewtonb,... If solveNewtonb == 1: Corresponds to solving a | |
51 % Newton system restricted to a sparse support. | |
52 % It is implemented via conjugate gradients. If | |
53 % solveNewtonb == 0: Step size selection as | |
54 % described in eqs. (12) and (13) in [1]. Default | |
55 % value: solveNewtonb = 0. For infty memory case, | |
56 % solveNewtonb = 0. | |
57 % gradientDescentx,... If gradientDescentx == 1: single gradient | |
58 % update of x_{i+1} restricted ot its support | |
59 % with line search. Default value: | |
60 % gradientDescentx = 1. | |
61 % solveNewtonx,... If solveNewtonx == 1: Akin to Hard Thresholding | |
62 % Pursuit (c.f. Simon Foucart, "Hard Thresholding | |
63 % Pursuit," preprint, 2010). Default vale: | |
64 % solveNewtonx = 0. | |
65 % ========================================================================= | |
66 % DESCRIPTION OF SPECIAL TAU VALUES: | |
67 % tau = -1,... Tau computed as the minimized of the objective | |
68 % function: | |
69 % | |
70 % <u - Ax_i, Phi(x_i - x_{i-1})> | |
71 % tau = -----------------------------. | |
72 % <u - Ax_i, Phi(x_i - x_{i-1})> | |
73 % | |
74 % tau = 0,... Follows FISTA weight configuration at each | |
75 % iteration. For more information, please read "A | |
76 % Fast Iterative Shrinkage-Thresholding Algorithm | |
77 % for Linear Inverse Problems", written by A. | |
78 % Beck and M. Teboulle, SIAM J. Imaging Sciences, | |
79 % vol. 2, no. 1, 2009. | |
80 % ========================================================================= | |
81 % OUTPUT ARGUMENTS: | |
82 % x_hat N x 1 recovered K-sparse vector. | |
83 % numiter Number of iterations executed. | |
84 % time Execution time in seconds. | |
85 % x_path Keeps a series of computed N x 1 K-sparse vectors | |
86 % until the end of the iterative process. | |
87 % ========================================================================= | |
88 % 01/04/2011, by Anastasios Kyrillidis. anastasios.kyrillidis@epfl.ch, EPFL. | |
89 % ========================================================================= | |
90 % cgsolve.m is written by Justin Romberg, Caltech, Oct. 2005. | |
91 % Email: jrom@acm.caltech.edu | |
92 % ========================================================================= | |
93 % This work was supported in part by the European Commission under Grant | |
94 % MIRG-268398 and DARPA KeCoM program #11-DARPA-1055. VC also would like | |
95 % to acknowledge Rice University for his Faculty Fellowship. | |
96 % ========================================================================= | |
97 | |
98 x_hat = 0; | |
99 time = 0; | |
100 x_path = 0; | |
101 | |
102 params.memory = 0; | |
103 params.tol = 1e-5; | |
104 params.ALPSiters = 300; | |
105 params.mode = 0; | |
106 params.tau = 1/2; | |
107 params.memory = 0; | |
108 params.cg_maxiter = 50; | |
109 params.cg_tol = 1e-8; | |
110 params.useCG = 0; | |
111 params.verbose = 0; | |
112 params.mu = 0; | |
113 | |
114 for in_arg = 1:2:length(varargin) | |
115 if (strcmp(varargin{in_arg}, 'memory')) | |
116 params.memory = varargin{in_arg+1}; | |
117 end | |
118 if (strcmp(varargin{in_arg}, 'mode')) | |
119 params.mode = varargin{in_arg+1}; | |
120 end | |
121 if (strcmp(varargin{in_arg}, 'tolerance')) | |
122 params.tol = varargin{in_arg+1}; | |
123 end | |
124 if (strcmp(varargin{in_arg}, 'ALPSiterations')) | |
125 params.ALPSiters = varargin{in_arg+1}; | |
126 end | |
127 if (strcmp(varargin{in_arg}, 'tau')) | |
128 params.tau = varargin{in_arg+1}; | |
129 end | |
130 if (strcmp(varargin{in_arg}, 'mu')) | |
131 params.mu = varargin{in_arg+1}; | |
132 end | |
133 if (strcmp(varargin{in_arg}, 'useCG')) | |
134 params.useCG = varargin{in_arg+1}; | |
135 end | |
136 if (strcmp(varargin{in_arg}, 'CGiters')) | |
137 params.cg_maxiter = varargin{in_arg+1}; | |
138 end | |
139 if (strcmp(varargin{in_arg}, 'CGtol')) | |
140 params.cg_tol = varargin{in_arg+1}; | |
141 end | |
142 if (strcmp(varargin{in_arg}, 'verbose')) | |
143 params.verbose = varargin{in_arg+1}; | |
144 end; | |
145 end; | |
146 | |
147 %% Check input | |
148 | |
149 if (ischar(params.memory)) | |
150 if ~(sum(params.memory == 'infty') == 5) | |
151 disp('ERROR: Memory variable takes positive integer values or "infty" value.'); | |
152 numiter = -1; | |
153 return; | |
154 end; | |
155 elseif (params.memory < 0 || ~isinteger(uint8(params.memory))) | |
156 disp('ERROR: Memory variable takes positive integer values or "infty" value.'); | |
157 numiter = -1; | |
158 return; | |
159 end; | |
160 | |
161 if (params.mode ~= 0 && params.mode ~= 1 && params.mode ~= 2 && params.mode ~= 4 && params.mode ~= 5 && params.mode ~= 6) | |
162 disp('ERROR: Mode variable takes values from range [0,1,2,4,5,6].'); | |
163 numiter = -1; | |
164 return; | |
165 end; | |
166 | |
167 if (params.tol < 0 || ~isnumeric(params.tol)) | |
168 disp('ERROR: tolerance variable must be positive.'); | |
169 numiter = -1; | |
170 return; | |
171 end; | |
172 | |
173 | |
174 if (params.mode == 0 || params.mode == 2) | |
175 params.useCG = 0; | |
176 end; | |
177 | |
178 y = y(:); | |
179 | |
180 M_y = length(y); | |
181 [M_Phi, tmpArg] = size(Phi); | |
182 | |
183 if (params.mode == 4 || params.mode == 5 || params.mode == 6) | |
184 if (M_Phi < 2*K) | |
185 disp('WARNING: Newton system may be ill-conditioned... Press any key to continue'); | |
186 pause; | |
187 end; | |
188 end; | |
189 | |
190 [params.solveNewtonb, params.gradientDescentx, params.solveNewtonx] = configuration(params.mode); | |
191 | |
192 if (M_y ~= M_Phi) | |
193 error('Inconsistent sampling matrix...'); | |
194 end; | |
195 | |
196 switch params.memory | |
197 case 0, | |
198 tic; | |
199 [x_hat, numiter, x_path] = zero_ALPS(y, Phi, K, params); | |
200 time = toc; | |
201 if (params.verbose == 1) | |
202 str = sprintf('%d-ALPS(%d) time: %s', params.memory, params.mode, num2str(time)); | |
203 disp(str); | |
204 str = sprintf('Number of iterations: %d', numiter); | |
205 disp(str); | |
206 end; | |
207 case 1, | |
208 tic; | |
209 [x_hat, numiter, x_path] = one_ALPS(y, Phi, K, params); | |
210 time = toc; | |
211 if (params.verbose == 1) | |
212 if (isa(params.tau,'float')) | |
213 if (params.tau == 0) | |
214 str = sprintf('%d-ALPS(%d) - fista tau - time: %s', params.memory, params.mode, num2str(time)); | |
215 elseif (params.tau == -1) | |
216 str = sprintf('%d-ALPS(%d) - optimized tau - time: %s', params.memory, params.mode, num2str(time)); | |
217 else | |
218 str = sprintf('%d-ALPS(%d) - tau = %.3f - time: %s', params.memory, params.mode, params.tau, num2str(time)); | |
219 end; | |
220 elseif (isa(params.tau, 'function_handle')) | |
221 str = sprintf('%d-ALPS(%d) - user derfined tau - time: %s', params.memory, params.mode, num2str(time)); | |
222 end; | |
223 disp(str); | |
224 str = sprintf('Number of iterations: %d', numiter); | |
225 disp(str); | |
226 end; | |
227 case 'infty', | |
228 tic; | |
229 [x_hat, numiter, x_path] = infty_ALPS(y, Phi, K, params); | |
230 time = toc; | |
231 if (params.verbose == 1) | |
232 if (isa(params.tau,'float')) | |
233 if (params.tau == -1) | |
234 str = sprintf('infty-ALPS(%d) - optimized tau - time: %s', params.mode, num2str(time)); | |
235 else | |
236 str = sprintf('infty-ALPS(%d) - tau = %.3f - time: %s', params.mode, params.tau, num2str(time)); | |
237 end; | |
238 elseif (isa(params.tau,'function_handle')) | |
239 str = sprintf('infty-ALPS(%d) - user derfined tau - time: %s', params.mode, num2str(time)); | |
240 end; | |
241 disp(str); | |
242 str = sprintf('Number of iterations: %d', numiter); | |
243 disp(str); | |
244 end; | |
245 otherwise | |
246 tic; | |
247 [x_hat, numiter, x_path] = l_ALPS(y, Phi, K, params); | |
248 time = toc; | |
249 if (params.verbose == 1) | |
250 if (isa(params.tau,'float')) | |
251 if (params.tau == -1) | |
252 str = sprintf('%d-ALPS(%d) - optimized tau - time: %s', params.memory, params.mode, num2str(time)); | |
253 else | |
254 str = sprintf('%d-ALPS(%d) - tau = %.3f - time: %s', params.memory, params.mode, params.tau, num2str(time)); | |
255 end; | |
256 elseif (isa(params.tau,'function_handle')) | |
257 str = sprintf('%d-ALPS(%d) - user derfined tau - time: %s', params.memory, params.mode, num2str(time)); | |
258 end; | |
259 disp(str); | |
260 str = sprintf('Number of iterations: %d', numiter); | |
261 disp(str); | |
262 end; | |
263 end; | |
264 |