comparison DL/Majorization Minimization DL/ExactDicoRecovery/ksvd_cn.m @ 159:23763c5fbda5 danieleb

Merge
author Daniele Barchiesi <daniele.barchiesi@eecs.qmul.ac.uk>
date Wed, 31 Aug 2011 10:43:32 +0100
parents b14209313ba4
children
comparison
equal deleted inserted replaced
158:855aa3288394 159:23763c5fbda5
1 % K-SVD algorithm for Dictionary Learning
2 % Y = input data (M X L matrix)
3 % Phi = initial dictionary (M X N), e.g. random dictionary or first N data samples
4 % lambda = regularization coefficient (||Phi*X-Y||_F)^2 + lambda*||X||_1
5 % IT = number of iterations
6 function [Phiout,X,ert] = ksvd_cn(Y,Phi,lambda,IT)
7 maxIT = 1000;
8 [PhiN,PhiM] = size(Phi);
9 RR1 = PhiM;
10 %%%%%%%%%%%%%%
11 % [PhiM,L] = size(ud);
12 [PhiN,L] = size(Y);
13 X = ones(PhiM,L);
14 for it = 1:IT
15 to = .1+svds(Phi,1);
16 [PhiN,PhiM] = size(Phi);
17 %%%%
18 eps = 3*10^-4;
19 map = 1; % Projecting on the selected space (0=no,1=yes)
20 [X,l1err] = mm1(Phi,Y,X,to,lambda,maxIT,eps,map); %% Sparse approximation with Iterative Soft-thresholding
21 ert(it) = l1err;
22 %%%
23 [Phi,X] = dict_update_KSVD_cn(Phi,Y,X);
24 end
25 Phiout = Phi;