comparison Problems/private/myblas.h @ 51:217a33ac374e

(none)
author idamnjanovic
date Mon, 14 Mar 2011 16:52:27 +0000
parents
children
comparison
equal deleted inserted replaced
50:d5155eaa3f68 51:217a33ac374e
1 /**************************************************************************
2 *
3 * File name: myblas.h
4 *
5 * Ron Rubinstein
6 * Computer Science Department
7 * Technion, Haifa 32000 Israel
8 * ronrubin@cs
9 *
10 * Version: 1.1
11 * Last updated: 17.8.2009
12 *
13 * A collection of basic linear algebra functions, in the spirit of the
14 * BLAS/LAPACK libraries.
15 *
16 *************************************************************************/
17
18
19
20 #ifndef __MY_BLAS_H__
21 #define __MY_BLAS_H__
22
23
24 #include "mex.h"
25 #include <math.h>
26
27
28
29 /**************************************************************************
30 * Squared value.
31 **************************************************************************/
32 #define SQR(X) ((X)*(X))
33
34
35
36 /**************************************************************************
37 * Matrix-vector multiplication.
38 *
39 * Computes an operation of the form:
40 *
41 * y := alpha*A*x
42 *
43 * Parameters:
44 * A - matrix of size n X m
45 * x - vector of length m
46 * y - output vector of length n
47 * alpha - real constant
48 * n, m - dimensions of A
49 *
50 * Note: This function re-writes the contents of y.
51 *
52 **************************************************************************/
53 void mat_vec(double alpha, double A[], double x[], double y[], mwSize n, mwSize m);
54
55
56
57 /**************************************************************************
58 * Matrix-transpose-vector multiplication.
59 *
60 * Computes an operation of the form:
61 *
62 * y := alpha*A'*x
63 *
64 * Parameters:
65 * A - matrix of size n X m
66 * x - vector of length n
67 * y - output vector of length m
68 * alpha - real constant
69 * n, m - dimensions of A
70 *
71 * Note: This function re-writes the contents of y.
72 *
73 **************************************************************************/
74 void matT_vec(double alpha, double A[], double x[], double y[], mwSize n, mwSize m);
75
76
77
78 /**************************************************************************
79 * Sparse-matrix-vector multiplication.
80 *
81 * Computes an operation of the form:
82 *
83 * y := alpha*A*x
84 *
85 * where A is a sparse matrix.
86 *
87 * Parameters:
88 * pr,ir,jc - sparse representation of the matrix A, of size n x m
89 * x - vector of length m
90 * y - output vector of length n
91 * alpha - real constant
92 * n, m - dimensions of A
93 *
94 * Note: This function re-writes the contents of y.
95 *
96 **************************************************************************/
97 void mat_sp_vec(double alpha, double pr[], mwIndex ir[], mwIndex jc[], double x[], double y[], mwSize n, mwSize m);
98
99
100
101 /**************************************************************************
102 * Sparse-matrix-transpose-vector multiplication.
103 *
104 * Computes an operation of the form:
105 *
106 * y := alpha*A'*x
107 *
108 * where A is a sparse matrix.
109 *
110 * Parameters:
111 * pr,ir,jc - sparse representation of the matrix A, of size n x m
112 * x - vector of length m
113 * y - output vector of length n
114 * alpha - real constant
115 * n, m - dimensions of A
116 *
117 * Note: This function re-writes the contents of y.
118 *
119 **************************************************************************/
120 void matT_sp_vec(double alpha, double pr[], mwIndex ir[], mwIndex jc[], double x[], double y[], mwSize n, mwSize m);
121
122
123
124 /**************************************************************************
125 * Matrix-sparse-vector multiplication.
126 *
127 * Computes an operation of the form:
128 *
129 * y := alpha*A*x
130 *
131 * where A is a matrix and x is a sparse vector.
132 *
133 * Parameters:
134 * A - matrix of size n X m
135 * pr,ir,jc - sparse representation of the vector x, of length m
136 * y - output vector of length n
137 * alpha - real constant
138 * n, m - dimensions of A
139 *
140 * Note: This function re-writes the contents of y.
141 *
142 **************************************************************************/
143 void mat_vec_sp(double alpha, double A[], double pr[], mwIndex ir[], mwIndex jc[], double y[], mwSize n, mwSize m);
144
145
146
147 /**************************************************************************
148 * Matrix-transpose-sparse-vector multiplication.
149 *
150 * Computes an operation of the form:
151 *
152 * y := alpha*A'*x
153 *
154 * where A is a matrix and x is a sparse vector.
155 *
156 * Parameters:
157 * A - matrix of size n X m
158 * pr,ir,jc - sparse representation of the vector x, of length n
159 * y - output vector of length m
160 * alpha - real constant
161 * n, m - dimensions of A
162 *
163 * Note: This function re-writes the contents of y.
164 *
165 **************************************************************************/
166 void matT_vec_sp(double alpha, double A[], double pr[], mwIndex ir[], mwIndex jc[], double y[], mwSize n, mwSize m);
167
168
169
170 /**************************************************************************
171 * Sparse-matrix-sparse-vector multiplication.
172 *
173 * Computes an operation of the form:
174 *
175 * y := alpha*A*x
176 *
177 * where A is a sparse matrix and x is a sparse vector.
178 *
179 * Parameters:
180 * pr,ir,jc - sparse representation of the matrix A, of size n x m
181 * prx,irx,jcx - sparse representation of the vector x (of length m)
182 * y - output vector of length n
183 * alpha - real constant
184 * n, m - dimensions of A
185 *
186 * Note: This function re-writes the contents of y.
187 *
188 **************************************************************************/
189 void mat_sp_vec_sp(double alpha, double pr[], mwIndex ir[], mwIndex jc[], double prx[], mwIndex irx[], mwIndex jcx[], double y[], mwSize n, mwSize m);
190
191
192
193 /**************************************************************************
194 * Sparse-matrix-transpose-sparse-vector multiplication.
195 *
196 * Computes an operation of the form:
197 *
198 * y := alpha*A'*x
199 *
200 * where A is a sparse matrix and x is a sparse vector.
201 *
202 * Importnant note: this function is provided for completeness, but is NOT efficient.
203 * If possible, convert x to non-sparse representation and use matT_vec_sp instead.
204 *
205 * Parameters:
206 * pr,ir,jc - sparse representation of the matrix A, of size n x m
207 * prx,irx,jcx - sparse representation of the vector x (of length n)
208 * y - output vector of length n
209 * alpha - real constant
210 * n, m - dimensions of A
211 *
212 * Note: This function re-writes the contents of y.
213 *
214 **************************************************************************/
215 void matT_sp_vec_sp(double alpha, double pr[], mwIndex ir[], mwIndex jc[], double prx[], mwIndex irx[], mwIndex jcx[], double y[], mwSize n, mwSize m);
216
217
218
219 /**************************************************************************
220 * Matrix-matrix multiplication.
221 *
222 * Computes an operation of the form:
223 *
224 * X := alpha*A*B
225 *
226 * Parameters:
227 * A - matrix of size n X m
228 * B - matrix of size m X k
229 * X - output matrix of size n X k
230 * alpha - real constant
231 * n, m, k - dimensions of A, B
232 *
233 * Note: This function re-writes the contents of X.
234 *
235 **************************************************************************/
236 void mat_mat(double alpha, double A[], double B[], double X[], mwSize n, mwSize m, mwSize k);
237
238
239
240 /**************************************************************************
241 * Matrix-transpose-matrix multiplication.
242 *
243 * Computes an operation of the form:
244 *
245 * X := alpha*A*B
246 *
247 * Parameters:
248 * A - matrix of size n X m
249 * B - matrix of size m X k
250 * X - output matrix of size n X k
251 * alpha - real constant
252 * n, m, k - dimensions of A, B
253 *
254 * Note: This function re-writes the contents of X.
255 *
256 **************************************************************************/
257 void matT_mat(double alpha, double A[], double B[], double X[], mwSize n, mwSize m, mwSize k);
258
259
260
261 /**************************************************************************
262 * Tensor-matrix multiplication.
263 *
264 * This function accepts a 3-D tensor A of size n X m X k
265 * and a 2-D matrix B of size l X k.
266 * The function computes the 3-D tensor X of size n X m X l, where
267 *
268 * X(i,j,:) = B*A(i,j,:)
269 *
270 * for all i,j.
271 *
272 * Parameters:
273 * A - tensor of size n X m X k
274 * B - matrix of size l X k
275 * X - output tensor of size n X m X l
276 * alpha - real constant
277 * n, m, k, l - dimensions of A, B
278 *
279 * Note: This function re-writes the contents of X.
280 *
281 **************************************************************************/
282 void tens_mat(double alpha, double A[], double B[], double X[], mwSize n, mwSize m, mwSize k, mwSize l);
283
284
285
286 /**************************************************************************
287 * Tensor-matrix-transpose multiplication.
288 *
289 * This function accepts a 3-D tensor A of size n X m X k
290 * and a 2-D matrix B of size k X l.
291 * The function computes the 3-D tensor X of size n X m X l, where
292 *
293 * X(i,j,:) = B'*A(i,j,:)
294 *
295 * for all i,j.
296 *
297 * Parameters:
298 * A - tensor of size n X m X k
299 * B - matrix of size k X l
300 * X - output tensor of size n X m X l
301 * alpha - real constant
302 * n, m, k, l - dimensions of A, B
303 *
304 * Note: This function re-writes the contents of X.
305 *
306 **************************************************************************/
307 void tens_matT(double alpha, double A[], double B[], double X[], mwSize n, mwSize m, mwSize k, mwSize l);
308
309
310
311 /**************************************************************************
312 * Vector-vector sum.
313 *
314 * Computes an operation of the form:
315 *
316 * y := alpha*x + y
317 *
318 * Parameters:
319 * x - vector of length n
320 * y - output vector of length n
321 * alpha - real constant
322 * n - length of x,y
323 *
324 * Note: This function re-writes the contents of y.
325 *
326 **************************************************************************/
327 void vec_sum(double alpha, double x[], double y[], mwSize n);
328
329
330
331 /**************************************************************************
332 * Triangular back substitution.
333 *
334 * Solve the set of linear equations
335 *
336 * T*x = b
337 *
338 * where T is lower or upper triangular.
339 *
340 * Parameters:
341 * ul - 'U' for upper triangular, 'L' for lower triangular
342 * A - matrix of size n x m containing T
343 * b - vector of length k
344 * x - output vector of length k
345 * n - size of first dimension of A
346 * k - the size of the equation set, k<=n,m
347 *
348 * Note:
349 * The matrix A can be of any size n X m, as long as n,m >= k.
350 * Only the lower/upper triangle of the submatrix A(1:k,1:k) defines the
351 * matrix T (depending on the parameter ul).
352 *
353 **************************************************************************/
354 void backsubst(char ul, double A[], double b[], double x[], mwSize n, mwSize k);
355
356
357
358 /**************************************************************************
359 * Solve a set of equations using a Cholesky decomposition.
360 *
361 * Solve the set of linear equations
362 *
363 * M*x = b
364 *
365 * where M is positive definite with a known Cholesky decomposition:
366 * either M=L*L' (L lower triangular) or M=U'*U (U upper triangular).
367 *
368 * Parameters:
369 * ul - 'U' for upper triangular, 'L' for lower triangular decomposition
370 * A - matrix of size n x m with the Cholesky decomposition of M
371 * b - vector of length k
372 * x - output vector of length k
373 * n - size of first dimension of A
374 * k - the size of the equation set, k<=n,m
375 *
376 * Note:
377 * The matrix A can be of any size n X m, as long as n,m >= k.
378 * Only the lower/upper triangle of the submatrix A(1:k,1:k) is used as
379 * the Cholesky decomposition of M (depending on the parameter ul).
380 *
381 **************************************************************************/
382 void cholsolve(char ul, double A[], double b[], double x[], mwSize n, mwSize k);
383
384
385
386 /**************************************************************************
387 * Maximum absolute value.
388 *
389 * Returns the index of the coefficient with maximal absolute value in a vector.
390 *
391 * Parameters:
392 * x - vector of length n
393 * n - length of x
394 *
395 **************************************************************************/
396 mwIndex maxabs(double x[], mwSize n);
397
398
399
400 /**************************************************************************
401 * Maximum vector element.
402 *
403 * Returns the index of the maximal coefficient in a vector.
404 *
405 * Parameters:
406 * x - vector of length n
407 * n - length of x
408 *
409 **************************************************************************/
410 mwIndex maxpos(double x[], mwSize n);
411
412
413
414 /**************************************************************************
415 * Vector-vector dot product.
416 *
417 * Computes an operation of the form:
418 *
419 * c = a'*b
420 *
421 * Parameters:
422 * a, b - vectors of length n
423 * n - length of a,b
424 *
425 * Returns: The dot product c.
426 *
427 **************************************************************************/
428 double dotprod(double a[], double b[], mwSize n);
429
430
431
432 /**************************************************************************
433 * Indexed vector assignment.
434 *
435 * Perform a permutation assignment of the form
436 *
437 * y = x(ind)
438 *
439 * where ind is an array of indices to x.
440 *
441 * Parameters:
442 * y - output vector of length k
443 * x - input vector of arbitrary length
444 * ind - array of indices into x (indices begin at 0)
445 * k - length of the array ind
446 *
447 **************************************************************************/
448 void vec_assign(double y[], double x[], mwIndex ind[], mwSize k);
449
450
451
452 /**************************************************************************
453 * Matrix transpose.
454 *
455 * Computes Y := X'
456 *
457 * Parameters:
458 * X - input matrix of size n X m
459 * Y - output matrix of size m X n
460 * n, m - dimensions of X
461 *
462 **************************************************************************/
463 void transpose(double X[], double Y[], mwSize n, mwSize m);
464
465
466
467 /**************************************************************************
468 * Print a matrix.
469 *
470 * Parameters:
471 * A - matrix of size n X m
472 * n, m - dimensions of A
473 * matname - name of matrix to display
474 *
475 **************************************************************************/
476 void printmat(double A[], int n, int m, char* matname);
477
478
479
480 /**************************************************************************
481 * Print a sparse matrix.
482 *
483 * Parameters:
484 * A - sparse matrix of type double
485 * matname - name of matrix to display
486 *
487 **************************************************************************/
488 void printspmat(mxArray *A, char* matname);
489
490
491 #endif
492