comparison Problems/generateAudioDeclippingProblem.m @ 136:1334d2302dd9 ivand_dev

Added Audio declipping problem (problem, reconstruct and example function)
author Ivan Damnjanovic lnx <ivan.damnjanovic@eecs.qmul.ac.uk>
date Thu, 14 Jul 2011 16:26:07 +0100
parents
children 9207d56c5547
comparison
equal deleted inserted replaced
134:10343fb66448 136:1334d2302dd9
1 function data = generateAudioDeclippingProblem(soundfile, clippingLevel, windowSize, overlap, wa, ws, wd, Dict_fun, redundancyFactor)
2 %% Generate Audio Declipping Problem
3 %
4 % CHANGE!!!generateAMT_Learning_Problem is a part of the SMALLbox and generates
5 % a problem that can be used for comparison of Dictionary Learning/Sparse
6 % Representation techniques in automatic music transcription scenario.
7 % The function prompts a user for an audio file (mid, wav, mat) reads it
8 % and generates a spectrogram given fft size (default nfft=4096), analysis
9 % window size (windowSize=2822), and analysis window overlap (overlap =
10 % 0.5).
11 %
12 % The output of the function is stucture with following fields:
13 % b - matrix with magnitudes of the spectrogram
14 % f - vector of frequencies at wihch spectrogram is computed
15 % windowSize - analysis window size
16 % overlap - analysis window overlap
17 % fs - sampling frequency
18 % m - number of frequenciy points in spectrogram
19 % n - number of time points in the spectrogram
20 % p - number of dictionary elements to be learned (eg 88 for piano)
21 % notesOriginal - notes of the original audio to be used for
22 % comparison (if midi of the original exists)
23 % name - name of the audio file to transcribe
24
25 % Centre for Digital Music, Queen Mary, University of London.
26 % This file copyright 2011 Ivan Damnjanovic.
27 %
28 % This program is free software; you can redistribute it and/or
29 % modify it under the terms of the GNU General Public License as
30 % published by the Free Software Foundation; either version 2 of the
31 % License, or (at your option) any later version. See the file
32 % COPYING included with this distribution for more information.
33 %
34 %%
35 FS=filesep;
36 TMPpath=pwd;
37
38 if ~ exist( 'soundfile', 'var' ) || isempty(soundfile)
39 %ask for file name
40 [pathstr1, name, ext, versn] = fileparts(which('SMALLboxSetup.m'));
41 cd([pathstr1,FS,'data',FS,'audio']);
42 [filename,pathname] = uigetfile({'*.mat; *.mid; *.wav'},'Select a file to transcribe');
43 [pathstr, name, ext, versn] = fileparts(filename);
44 data.name=name;
45
46 if strcmp(ext,'.mid')
47 midi=readmidi(filename);
48 % data.notesOriginal=midiInfo(midi);
49 y=midi2audio(midi);
50 wavwrite(y, 44100, 16, 'temp.wav');
51 [x.signal, x.fs, x.nbits]=wavread('temp.wav');
52 delete('temp.wav');
53 elseif strcmp(ext,'.wav')
54 % cd([pathstr1,FS, 'data', FS, 'audio', FS, 'midi']);
55 % filename1=[name, '.mid'];
56 % if exist(filename1, 'file')
57 % midi=readmidi(filename1);
58 % data.notesOriginal=midiInfo(midi);
59 % end
60 cd([pathstr1,FS, 'data', FS, 'audio', FS, 'wav']);
61 [x.signal, x.fs, x.nbits]=wavread(filename);
62 else
63 % cd([pathstr1,FS, 'data', FS, 'audio', FS, 'midi']);
64 % filename1=[name, '.mid'];
65 % if exist(filename1, 'file')
66 % midi=readmidi(filename1);
67 % data.notesOriginal=midiInfo(midi);
68 % end
69 cd([pathstr1,FS, 'data', FS, 'audio', FS, 'mat']);
70 x=load([pathname,filename]);
71 end
72 else
73 [x.signal, x.fs, x.nbits]=wavread(soundfile);
74 [pathstr, name, ext, versn] = fileparts(soundfile);
75 data.name=name;
76 end
77
78 if ~ exist( 'clippingLevel', 'var' ) || isempty(clippingLevel), clippingLevel = 0.6; end
79 if ~ exist( 'windowSize', 'var' ) || isempty(windowSize), windowSize = 256; end
80 if ~ exist( 'overlap', 'var' ) || isempty(overlap), overlap = 0.5; end
81 if ~ exist( 'wa', 'var' ) || isempty(wa), wa = @wRect; end % Analysis window
82 if ~ exist( 'ws', 'var' ) || isempty(ws), ws = @wSine; end % Synthesis window
83 if ~ exist( 'wd', 'var' ) || isempty(wd), wd = @wRect; end % Weighting window for dictionary atoms
84
85 %% preparing signal
86
87 [problemData, solutionData] = generateDeclippingProblem(x.signal,clippingLevel);
88
89 x_clip = im2colstep(problemData.x,[windowSize 1],[overlap*windowSize 1]);
90 x_clip= diag(wa(windowSize)) * x_clip;
91 blkMask=im2colstep(double(~problemData.IMiss),[256 1],[128 1]);
92
93 %% Building dictionary
94 if ~exist( 'redundancyFactor', 'var' ) || isempty(redundancyFactor), redundancyFactor = 2; end % Weighting window for dictionary atoms
95 if exist('Dict_fun', 'var')&&~isempty(Dict_fun)
96 param=struct('N', windowSize, 'redundancyFactor', redundancyFactor, 'wd', wd);
97 data.B = Dict_fun(param);
98 end
99
100 data.b = x_clip;
101 data.M = blkMask;
102 data.original = solutionData.xClean;
103 data.clipped = problemData.x;
104 data.clipMask = problemData.IMiss;
105 data.clippingLevel = clippingLevel;
106 data.windowSize = windowSize;
107 data.overlap = overlap;
108 data.ws = ws;
109 data.wa = wa;
110 data.wd = wd;
111
112 data.fs = x.fs;
113 data.nbits = x.nbits;
114
115 [data.m, data.n] = size(x_clip);
116 data.p = windowSize*redundancyFactor; %number of dictionary elements
117
118 cd(TMPpath);
119
120 end