Mercurial > hg > smallbox
comparison toolboxes/alps/ALPS/zero_ALPS.m @ 154:0de08f68256b ivand_dev
ALPS toolbox - Algebraic Pursuit added to smallbox
author | Ivan Damnjanovic lnx <ivan.damnjanovic@eecs.qmul.ac.uk> |
---|---|
date | Fri, 12 Aug 2011 11:17:47 +0100 |
parents | |
children |
comparison
equal
deleted
inserted
replaced
153:af307f247ac7 | 154:0de08f68256b |
---|---|
1 function [x_hat, numiter, x_path] = zero_ALPS(y, Phi, K, params) | |
2 % ========================================================================= | |
3 % 0-ALPS(#) algorithm - Beta Version | |
4 % ========================================================================= | |
5 % Algebraic Pursuit (ALPS) algorithm with memoryless acceleration. | |
6 % | |
7 % Detailed discussion on the algorithm can be found in | |
8 % [1] "On Accelerated Hard Thresholding Methods for Sparse Approximation", written | |
9 % by Volkan Cevher, Technical Report, 2011. | |
10 % ========================================================================= | |
11 % INPUT ARGUMENTS: | |
12 % y M x 1 undersampled measurement vector. | |
13 % Phi M x N regression matrix. | |
14 % K Sparsity of underlying vector x* or desired | |
15 % sparsity of solution. | |
16 % params Structure of parameters. These are: | |
17 % | |
18 % tol,... Early stopping tolerance. Default value: tol = | |
19 % 1-e5 | |
20 % ALPSiters,... Maximum number of algorithm iterations. Default | |
21 % value: 300. | |
22 % mode, ... According to [1], possible values are | |
23 % [0,1,2,4,5,6]. This value comes from the binary | |
24 % representation of the parameters: | |
25 % (solveNewtob, gradientDescentx, solveNewtonx), | |
26 % which are explained next. Default value = 0. | |
27 % solveNewtonb,... If solveNewtonb == 1: Corresponds to solving a | |
28 % Newton system restricted to a sparse support. | |
29 % It is implemented via conjugate gradients. | |
30 % If solveNewtonb == 0: Step size selection as described | |
31 % in eqs. (12) and (13) in [1]. | |
32 % Default value: solveNewtonb = 0. | |
33 % gradientDescentx,... If gradientDescentx == 1: single gradient | |
34 % update of x_{i+1} restricted ot its support with | |
35 % line search. Default value: gradientDescentx = | |
36 % 1. | |
37 % solveNewtonx,... If solveNewtonx == 1: Akin to Hard Thresholding Pursuit | |
38 % (c.f. Simon Foucart, "Hard Thresholding Pursuit," | |
39 % preprint, 2010). Default vale: solveNewtonx = 0 | |
40 % mu,... Variable that controls the step size selection. | |
41 % When mu = 0, step size is computed adaptively | |
42 % per iteration. Default value: mu = 0. | |
43 % cg_maxiter,... Maximum iterations for Conjugate-Gradients method. | |
44 % cg_tol Tolerance variable for Conjugate-Gradients method. | |
45 % ========================================================================= | |
46 % OUTPUT ARGUMENTS: | |
47 % x_hat N x 1 recovered K-sparse vector. | |
48 % numiter Number of iterations executed. | |
49 % x_path Keeps a series of computed N x 1 K-sparse vectors | |
50 % until the end of the iterative process. | |
51 % ========================================================================= | |
52 % 01/04/2011, by Anastasios Kyrillidis. anastasios.kyrillidis@epfl.ch, EPFL. | |
53 % ========================================================================= | |
54 % cgsolve.m is written by Justin Romberg, Caltech, Oct. 2005. | |
55 % Email: jrom@acm.caltech.edu | |
56 % ========================================================================= | |
57 % This work was supported in part by the European Commission under Grant | |
58 % MIRG-268398 and DARPA KeCoM program #11-DARPA-1055. VC also would like | |
59 % to acknowledge Rice University for his Faculty Fellowship. | |
60 % ========================================================================= | |
61 | |
62 [tmpArg, N] = size(Phi); | |
63 | |
64 %% Initialize transpose of measurement matrix | |
65 | |
66 Phi_t = Phi'; | |
67 | |
68 %% Initialize to zero vector | |
69 x_cur = zeros(N,1); | |
70 X_i = []; | |
71 | |
72 x_path = zeros(N, params.ALPSiters); | |
73 | |
74 %% CG params | |
75 if (params.mode == 1 || params.mode == 4 || params.mode == 5 || params.mode == 6) | |
76 cg_verbose = 0; | |
77 cg_A = Phi_t*Phi; | |
78 cg_b = Phi_t*y; | |
79 end; | |
80 | |
81 %% Determine step size selection strategy | |
82 function_mu = 0; | |
83 adaptive_mu = 0; | |
84 | |
85 if (isa(params.mu,'float')) | |
86 function_mu = 0; | |
87 if (params.mu == 0) | |
88 adaptive_mu = 1; | |
89 else | |
90 adaptive_mu = 0; | |
91 end; | |
92 elseif (isa(params.mu,'function_handle')) | |
93 function_mu = 1; | |
94 end; | |
95 | |
96 %% Help variables | |
97 complementary_Xi = ones(N,1); | |
98 | |
99 i = 1; | |
100 %% 0-ALPS(#) | |
101 while (i <= params.ALPSiters) | |
102 x_path(:,i) = x_cur; | |
103 x_prev = x_cur; | |
104 | |
105 % Compute the residual | |
106 if (i == 1) | |
107 res = y; | |
108 else | |
109 Phi_x_cur = Phi(:,X_i)*x_cur(X_i); | |
110 res = y - Phi_x_cur; | |
111 end; | |
112 | |
113 % Compute the derivative | |
114 der = Phi_t*res; | |
115 | |
116 % Determine S_i set via eq. (11) | |
117 complementary_Xi(X_i) = 0; | |
118 [tmpArg, ind_der] = sort(abs(der).*complementary_Xi, 'descend'); | |
119 complementary_Xi(X_i) = 1; | |
120 S_i = [X_i; ind_der(1:K)]; | |
121 | |
122 ider = der(S_i); | |
123 if (params.solveNewtonb == 1) | |
124 % Compute least squares solution of the system A*y = (A*A)x using CG | |
125 if (params.useCG == 1) | |
126 [b, tmpArg, tmpArg] = cgsolve(cg_A(S_i, S_i), cg_b(S_i), params.cg_tol, params.cg_maxiter, cg_verbose); | |
127 else | |
128 b = cg_A(S_i,S_i)\cg_b(S_i); | |
129 end; | |
130 else | |
131 % Step size selection via eq. (12) and eq. (13) | |
132 if (adaptive_mu) | |
133 Pder = Phi(:,S_i)*ider; | |
134 mu_bar = ider'*ider/(Pder'*Pder); | |
135 b = x_cur(S_i) + (mu_bar)*ider; | |
136 elseif (function_mu) | |
137 b = x_cur(S_i) + params.mu(i)*ider; | |
138 else | |
139 b = x_cur(S_i) + params.mu*ider; | |
140 end; | |
141 end; | |
142 | |
143 % Hard-threshold b and compute X_{i+1} | |
144 [tmpArg, ind_b] = sort(abs(b), 'descend'); | |
145 x_cur = zeros(N,1); | |
146 x_cur(S_i(ind_b(1:K))) = b(ind_b(1:K)); | |
147 X_i = S_i(ind_b(1:K)); | |
148 | |
149 if (params.gradientDescentx == 1) | |
150 % Calculate gradient of estimated vector x_cur | |
151 Phi_x_cur = Phi(:,X_i)*x_cur(X_i); | |
152 res = y - Phi_x_cur; | |
153 der = Phi_t*res; | |
154 ider = der(X_i); | |
155 | |
156 if (adaptive_mu) | |
157 Pder = Phi(:,X_i)*ider; | |
158 mu_bar = ider'*ider/(Pder'*Pder); | |
159 x_cur(X_i) = x_cur(X_i) + mu_bar*ider; | |
160 elseif (function_mu) | |
161 x_cur(X_i) = x_cur(X_i) + params.mu(i)*ider; | |
162 else x_cur(X_i) = x_cur(X_i) + params.mu*ider; | |
163 end; | |
164 elseif (params.solveNewtonx == 1) | |
165 % Similar to HTP | |
166 if (params.useCG == 1) | |
167 [v, tmpArg, tmpArg] = cgsolve(cg_A(X_i, X_i), cg_b(X_i), params.cg_tol, params.cg_maxiter, cg_verbose); | |
168 else | |
169 v = cg_A(X_i,X_i)\cg_b(X_i); | |
170 end; | |
171 x_cur(X_i) = v; | |
172 end; | |
173 | |
174 % Test stopping criterion | |
175 if (i > 1) && (norm(x_cur - x_prev) < params.tol*norm(x_cur)) | |
176 break; | |
177 end; | |
178 i = i + 1; | |
179 | |
180 end; | |
181 | |
182 x_hat = x_cur; | |
183 numiter = i; | |
184 | |
185 if (i > params.ALPSiters) | |
186 x_path = x_path(:,1:numiter-1); | |
187 else | |
188 x_path = x_path(:,1:numiter); | |
189 end; |