ivan@154
|
1 function [x_hat, numiter, x_path] = l_ALPS(y, Phi, K, params)
|
ivan@154
|
2 % =========================================================================
|
ivan@154
|
3 % l-ALPS(#) algorithm - Beta Version
|
ivan@154
|
4 % =========================================================================
|
ivan@154
|
5 % Algebraic Pursuit (ALPS) algorithm with l-memory acceleration.
|
ivan@154
|
6 %
|
ivan@154
|
7 % Detailed discussion on the algorithm can be found in section III in
|
ivan@154
|
8 % [1] "On Accelerated Hard Thresholding Methods for Sparse Approximation", written
|
ivan@154
|
9 % by Volkan Cevher, Technical Report, 2011.
|
ivan@154
|
10 % =========================================================================
|
ivan@154
|
11 % INPUT ARGUMENTS:
|
ivan@154
|
12 % y M x 1 undersampled measurement vector.
|
ivan@154
|
13 % Phi M x N regression matrix.
|
ivan@154
|
14 % K Sparsity of underlying vector x* or desired
|
ivan@154
|
15 % sparsity of solution.
|
ivan@154
|
16 % params Structure of parameters. These are:
|
ivan@154
|
17 %
|
ivan@154
|
18 % tol,... Early stopping tolerance. Default value: tol =
|
ivan@154
|
19 % 1-e5
|
ivan@154
|
20 % ALPSiters,... Maximum number of algorithm iterations. Default
|
ivan@154
|
21 % value: 300.
|
ivan@154
|
22 % solveNewtonb,... If solveNewtonb == 1: Corresponds to solving a
|
ivan@154
|
23 % Newton system restricted to a sparse support.
|
ivan@154
|
24 % It is implemented via conjugate gradients.
|
ivan@154
|
25 % If solveNewtonb == 0: Step size selection as described
|
ivan@154
|
26 % in eqs. (12) and (13) in [1].
|
ivan@154
|
27 % Default value: solveNewtonb = 0.
|
ivan@154
|
28 % gradientDescentx,... If gradientDescentx == 1: single gradient
|
ivan@154
|
29 % update of x_{i+1} restricted ot its support with
|
ivan@154
|
30 % line search. Default value: gradientDescentx =
|
ivan@154
|
31 % 1.
|
ivan@154
|
32 % solveNewtonx,... If solveNewtonx == 1: Akin to Hard Thresholding Pursuit
|
ivan@154
|
33 % (c.f. Simon Foucart, "Hard Thresholding Pursuit,"
|
ivan@154
|
34 % preprint, 2010). Default vale: solveNewtonx = 0
|
ivan@154
|
35 % tau,... Variable that controls the momentum in
|
ivan@154
|
36 % non-memoryless case. Ignored in memoryless
|
ivan@154
|
37 % case. Default value: tau = 1/2.
|
ivan@154
|
38 % Special cases:
|
ivan@154
|
39 % - tau = -1: momentum step size is automatically
|
ivan@154
|
40 % optimized in every step.
|
ivan@154
|
41 % - tau as a function handle: user defined
|
ivan@154
|
42 % behavior of tau momentum term.
|
ivan@154
|
43 % mu,... Variable that controls the step size selection.
|
ivan@154
|
44 % When mu = 0, step size is computed adaptively
|
ivan@154
|
45 % per iteration. Default value: mu = 0.
|
ivan@154
|
46 % cg_maxiter,... Maximum iterations for Conjugate-Gradients method.
|
ivan@154
|
47 % cg_tol Tolerance variable for Conjugate-Gradients method.
|
ivan@154
|
48 % =========================================================================
|
ivan@154
|
49 % OUTPUT ARGUMENTS:
|
ivan@154
|
50 % x_hat N x 1 recovered K-sparse vector.
|
ivan@154
|
51 % numiter Number of iterations executed.
|
ivan@154
|
52 % x_path Keeps a series of computed N x 1 K-sparse vectors
|
ivan@154
|
53 % until the end of the iterative process.
|
ivan@154
|
54 % =========================================================================
|
ivan@154
|
55 % 01/04/2011, by Anastasios Kyrillidis. anastasios.kyrillidis@epfl.ch, EPFL.
|
ivan@154
|
56 % =========================================================================
|
ivan@154
|
57 % cgsolve.m is written by Justin Romberg, Caltech, Oct. 2005.
|
ivan@154
|
58 % Email: jrom@acm.caltech.edu
|
ivan@154
|
59 % =========================================================================
|
ivan@154
|
60 % This work was supported in part by the European Commission under Grant
|
ivan@154
|
61 % MIRG-268398 and DARPA KeCoM program #11-DARPA-1055. VC also would like
|
ivan@154
|
62 % to acknowledge Rice University for his Faculty Fellowship.
|
ivan@154
|
63 % =========================================================================
|
ivan@154
|
64
|
ivan@154
|
65 [M, N] = size(Phi);
|
ivan@154
|
66
|
ivan@154
|
67 %% Initialize transpose of measurement matrix
|
ivan@154
|
68
|
ivan@154
|
69 Phi_t = Phi';
|
ivan@154
|
70
|
ivan@154
|
71 %% Initialize to zero vector
|
ivan@154
|
72 y_cur = zeros(N,1);
|
ivan@154
|
73 Y_i = [];
|
ivan@154
|
74
|
ivan@154
|
75 x_path = zeros(N, params.ALPSiters);
|
ivan@154
|
76
|
ivan@154
|
77 %% CG params
|
ivan@154
|
78 if (params.solveNewtonx == 1 || params.solveNewtonb == 1)
|
ivan@154
|
79 cg_verbose = 0;
|
ivan@154
|
80 cg_A = Phi_t*Phi;
|
ivan@154
|
81 cg_b = Phi_t*y;
|
ivan@154
|
82 end;
|
ivan@154
|
83
|
ivan@154
|
84 %% Determine momentum step size selection strategy
|
ivan@154
|
85 optimizeTau = 0;
|
ivan@154
|
86 function_tau = 0;
|
ivan@154
|
87
|
ivan@154
|
88 if (isa(params.tau,'float'))
|
ivan@154
|
89 if (params.tau == -1)
|
ivan@154
|
90 optimizeTau = 1;
|
ivan@154
|
91 end;
|
ivan@154
|
92 elseif (isa(params.tau, 'function_handle'))
|
ivan@154
|
93 function_tau = 1;
|
ivan@154
|
94 end;
|
ivan@154
|
95
|
ivan@154
|
96 %% Determine step size selection strategy
|
ivan@154
|
97 function_mu = 0;
|
ivan@154
|
98 adaptive_mu = 0;
|
ivan@154
|
99
|
ivan@154
|
100 if (isa(params.mu,'float'))
|
ivan@154
|
101 function_mu = 0;
|
ivan@154
|
102 if (params.mu == 0)
|
ivan@154
|
103 adaptive_mu = 1;
|
ivan@154
|
104 else
|
ivan@154
|
105 adaptive_mu = 0;
|
ivan@154
|
106 end;
|
ivan@154
|
107 elseif (isa(params.mu,'function_handle'))
|
ivan@154
|
108 function_mu = 1;
|
ivan@154
|
109 end;
|
ivan@154
|
110
|
ivan@154
|
111 %% Help variables
|
ivan@154
|
112 complementary_Yi = ones(N,1);
|
ivan@154
|
113 x = zeros(N,params.memory + 1);
|
ivan@154
|
114 Phi_x = zeros(M,params.memory + 1);
|
ivan@154
|
115 tau_candidates = zeros(params.memory,1);
|
ivan@154
|
116 y_candidates = zeros(N,params.memory);
|
ivan@154
|
117 residual_energy = zeros(params.memory,1);
|
ivan@154
|
118
|
ivan@154
|
119 i = 1;
|
ivan@154
|
120 %% l-ALPS(#)
|
ivan@154
|
121 while (i <= params.ALPSiters)
|
ivan@154
|
122 x_path(:,i) = x(:,end);
|
ivan@154
|
123
|
ivan@154
|
124 for k = 1:params.memory
|
ivan@154
|
125 x(:,k) = x(:,k+1);
|
ivan@154
|
126 Phi_x(:,k) = Phi_x(:,k+1);
|
ivan@154
|
127 end;
|
ivan@154
|
128
|
ivan@154
|
129 % Compute the residual
|
ivan@154
|
130 if (i == 1)
|
ivan@154
|
131 res = y;
|
ivan@154
|
132 else
|
ivan@154
|
133 Phi_y_cur = Phi(:,Y_i)*y_cur(Y_i);
|
ivan@154
|
134 res = y - Phi_y_cur;
|
ivan@154
|
135 end;
|
ivan@154
|
136
|
ivan@154
|
137 % Compute the derivative
|
ivan@154
|
138 der = Phi_t*res;
|
ivan@154
|
139
|
ivan@154
|
140 % Determine S_i via eq. (11) (change of variable from x_i to y_i)
|
ivan@154
|
141 complementary_Yi(Y_i) = 0;
|
ivan@154
|
142 [tmpArg, ind_der] = sort(abs(der).*complementary_Yi, 'descend');
|
ivan@154
|
143 complementary_Yi(Y_i) = 1;
|
ivan@154
|
144 S_i = [Y_i; ind_der(1:K)];
|
ivan@154
|
145
|
ivan@154
|
146 ider = der(S_i);
|
ivan@154
|
147 if (params.solveNewtonb == 1)
|
ivan@154
|
148 % Compute least squares solution of the system A*y = (A*A)x using CG
|
ivan@154
|
149 if (params.useCG == 1)
|
ivan@154
|
150 [b, tmpArg, tmpArg] = cgsolve(cg_A(S_i, S_i), cg_b(S_i), params.cg_tol, params.cg_maxiter, cg_verbose);
|
ivan@154
|
151 else
|
ivan@154
|
152 b = cg_A(S_i,S_i)\cg_b(S_i);
|
ivan@154
|
153 end;
|
ivan@154
|
154 else
|
ivan@154
|
155 % Step size selection via eq. (12) and eq. (13) (change of variable from x_i to y_i)
|
ivan@154
|
156 if (adaptive_mu)
|
ivan@154
|
157 Pder = Phi(:,S_i)*ider;
|
ivan@154
|
158 mu_bar = ider'*ider/(Pder'*Pder);
|
ivan@154
|
159 b = y_cur(S_i) + mu_bar*ider;
|
ivan@154
|
160 elseif (function_mu)
|
ivan@154
|
161 b = y_cur(S_i) + params.mu(i)*ider;
|
ivan@154
|
162 else b = y_cur(S_i) + params.mu*ider;
|
ivan@154
|
163 end;
|
ivan@154
|
164 end;
|
ivan@154
|
165
|
ivan@154
|
166 % Hard-threshold b and compute X_{i+1}
|
ivan@154
|
167 [tmpArg, ind_b] = sort(abs(b), 'descend');
|
ivan@154
|
168 x(:,end) = zeros(N,1);
|
ivan@154
|
169 x(S_i(ind_b(1:K)),end) = b(ind_b(1:K));
|
ivan@154
|
170 X_i = S_i(ind_b(1:K));
|
ivan@154
|
171
|
ivan@154
|
172 if (params.gradientDescentx == 1)
|
ivan@154
|
173 % Calculate gradient of estimated current x vector
|
ivan@154
|
174 Phi_x_cur = Phi(:,X_i)*x(X_i,end);
|
ivan@154
|
175 res = y - Phi_x_cur;
|
ivan@154
|
176 der = Phi_t*res;
|
ivan@154
|
177 ider = der(X_i);
|
ivan@154
|
178
|
ivan@154
|
179 if (adaptive_mu)
|
ivan@154
|
180 Pder = Phi(:,X_i)*ider;
|
ivan@154
|
181 mu_bar = ider'*ider/(Pder'*Pder);
|
ivan@154
|
182 x(X_i,end) = x(X_i,end) + mu_bar*ider;
|
ivan@154
|
183 elseif (function_mu)
|
ivan@154
|
184 x(X_i,end) = x(X_i,end) + params.mu(i)*ider;
|
ivan@154
|
185 else x(X_i,end) = x(X_i,end) + params.mu*ider;
|
ivan@154
|
186 end;
|
ivan@154
|
187 elseif (params.solveNewtonx == 1)
|
ivan@154
|
188 % Similar to HTP
|
ivan@154
|
189 if (params.useCG == 1)
|
ivan@154
|
190 [v, tmpArg, tmpArg] = cgsolve(cg_A(X_i, X_i), cg_b(X_i), params.cg_tol, params.cg_maxiter, cg_verbose);
|
ivan@154
|
191 else
|
ivan@154
|
192 v = cg_A(X_i, X_i)\cg_b(X_i);
|
ivan@154
|
193 end;
|
ivan@154
|
194 x(X_i,end) = v;
|
ivan@154
|
195 end;
|
ivan@154
|
196
|
ivan@154
|
197 Phi_x(:,end) = Phi(:,X_i)*x(X_i,end);
|
ivan@154
|
198 res = y - Phi_x(:,end);
|
ivan@154
|
199 if (~function_tau) % If tau is not a function handle...
|
ivan@154
|
200 if (optimizeTau) % Compute optimized tau
|
ivan@154
|
201 if (i > params.memory)
|
ivan@154
|
202
|
ivan@154
|
203 % tau = argmin ||u - Phi*y_{i+1}||
|
ivan@154
|
204 % = <res, Phi*(x_cur - x_prev)>/||Phi*(x_cur - x_prev)||^2
|
ivan@154
|
205
|
ivan@154
|
206 for k = 1:params.memory
|
ivan@154
|
207 Phi_diff = Phi_x(:,end) - Phi_x(:,k);
|
ivan@154
|
208 tau_candidates(k) = res'*Phi_diff/(Phi_diff'*Phi_diff);
|
ivan@154
|
209 y_candidates(:,k) = x(:,end) + tau_candidates(k)*(x(:,end) - x(:,k));
|
ivan@154
|
210 residual_energy(k) = norm(y - Phi*y_candidates(:,k));
|
ivan@154
|
211 end;
|
ivan@154
|
212
|
ivan@154
|
213 [tmpArg,min_ind] = min(residual_energy);
|
ivan@154
|
214 y_cur = y_candidates(:,min_ind);
|
ivan@154
|
215 Y_i = find(ne(y_cur,0));
|
ivan@154
|
216 else
|
ivan@154
|
217 Phi_diff = Phi_x(:,end) - Phi_x(:,end-1);
|
ivan@154
|
218 params.tau = res'*Phi_diff/(Phi_diff'*Phi_diff);
|
ivan@154
|
219 y_cur = x(:,end) + params.tau*(x(:,end) - x(:,end-1));
|
ivan@154
|
220 Y_i = find(ne(y_cur,0));
|
ivan@154
|
221 end;
|
ivan@154
|
222 else
|
ivan@154
|
223 if (i > params.memory)
|
ivan@154
|
224 for k = 1:params.memory
|
ivan@154
|
225 y_candidates(:,k) = x(:,end) + params.tau*(x(:,end) - x(:,k));
|
ivan@154
|
226 residual_energy(k) = norm(y - Phi*y_candidates(:,k));
|
ivan@154
|
227 end;
|
ivan@154
|
228
|
ivan@154
|
229 [tmpArg,min_ind] = min(residual_energy);
|
ivan@154
|
230 y_cur = y_candidates(:,min_ind);
|
ivan@154
|
231 Y_i = find(ne(y_cur,0));
|
ivan@154
|
232 else
|
ivan@154
|
233 y_cur = x(:,end) + params.tau*(x(:,end) - x(:,end-1));
|
ivan@154
|
234 Y_i = find(ne(y_cur,0));
|
ivan@154
|
235 end;
|
ivan@154
|
236 end;
|
ivan@154
|
237 else
|
ivan@154
|
238 if (i > params.memory)
|
ivan@154
|
239 for k = 1:params.memory
|
ivan@154
|
240 y_candidates(:,k) = x(:,end) + params.tau(i)*(x(:,end) - x(:,k));
|
ivan@154
|
241 residual_energy(k) = norm(y - Phi*y_candidates(:,k))^2;
|
ivan@154
|
242 end;
|
ivan@154
|
243
|
ivan@154
|
244 [tmpArg,min_ind] = min(residual_energy);
|
ivan@154
|
245 y_cur = y_candidates(:,min_ind);
|
ivan@154
|
246 Y_i = find(ne(y_cur,0));
|
ivan@154
|
247 else
|
ivan@154
|
248 y_cur = x(:,end) + params.tau(i)*(x(:,end) - x(:,end-1));
|
ivan@154
|
249 Y_i = find(ne(y_cur,0));
|
ivan@154
|
250 end;
|
ivan@154
|
251 end;
|
ivan@154
|
252
|
ivan@154
|
253 % Test stopping criterion
|
ivan@154
|
254 if (i > 1) && (norm(x(:,end) - x(:,end-1)) < params.tol*norm(x(:,end)))
|
ivan@154
|
255 break;
|
ivan@154
|
256 end;
|
ivan@154
|
257 i = i + 1;
|
ivan@154
|
258 end;
|
ivan@154
|
259
|
ivan@154
|
260 x_hat = x(:,end);
|
ivan@154
|
261 numiter = i;
|
ivan@154
|
262
|
ivan@154
|
263 if (i > params.ALPSiters)
|
ivan@154
|
264 x_path = x_path(:,1:numiter-1);
|
ivan@154
|
265 else
|
ivan@154
|
266 x_path = x_path(:,1:numiter);
|
ivan@154
|
267 end;
|