idamnjanovic@1
|
1
|
luis@238
|
2 SMALLbox Version 2.0
|
idamnjanovic@1
|
3
|
luis@238
|
4 25th May, 2012
|
idamnjanovic@29
|
5
|
luis@238
|
6 Version 2.0 of SMALLbox is the release candidate that is distributed
|
idamnjanovic@29
|
7 for testing and bug fixing purposes. Please send all bugs, requests and suggestions to:
|
idamnjanovic@29
|
8
|
luis@238
|
9 luis.figueira@soundsoftware.ac.uk
|
idamnjanovic@1
|
10
|
idamnjanovic@1
|
11 ---------------------------------------------------------------------------
|
idamnjanovic@1
|
12
|
luis@238
|
13 Copyright (2012): Luis Figueira, Ivan Damnjanovic, Matthew Davies
|
idamnjanovic@29
|
14 Centre for Digital Music,
|
idamnjanovic@29
|
15 Queen Mary University of London
|
idamnjanovic@1
|
16
|
idamnjanovic@1
|
17 SMALLbox is distributed under the terms of the GNU General Public License 3
|
idamnjanovic@1
|
18
|
idamnjanovic@1
|
19 This program is free software: you can redistribute it and/or modify
|
idamnjanovic@1
|
20 it under the terms of the GNU General Public License as published by
|
idamnjanovic@1
|
21 the Free Software Foundation, either version 3 of the License, or
|
idamnjanovic@1
|
22 (at your option) any later version.
|
idamnjanovic@1
|
23
|
idamnjanovic@1
|
24 This program is distributed in the hope that it will be useful,
|
idamnjanovic@1
|
25 but WITHOUT ANY WARRANTY; without even the implied warranty of
|
idamnjanovic@1
|
26 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
idamnjanovic@1
|
27 GNU General Public License for more details.
|
idamnjanovic@1
|
28
|
idamnjanovic@1
|
29 You should have received a copy of the GNU General Public License
|
idamnjanovic@1
|
30 along with this program. If not, see <http://www.gnu.org/licenses/>.
|
idamnjanovic@1
|
31
|
idamnjanovic@1
|
32 ---------------------------------------------------------------------------
|
idamnjanovic@1
|
33
|
idamnjanovic@1
|
34 SMALLbox is a MATLAB Evaluation Framework for the EU FET-OPEN Project, no: 225913:
|
idamnjanovic@1
|
35 Sparse Models, Algorithms, and Learning for Large-scale data (SMALL).
|
idamnjanovic@1
|
36
|
idamnjanovic@1
|
37 The project team includes researchers from the following institutions:
|
idamnjanovic@1
|
38
|
idamnjanovic@1
|
39 INRIA: http://www.irisa.fr/metiss/gribonval/
|
idamnjanovic@1
|
40 University of Edinburgh: http://www.see.ed.ac.uk/~mdavies4/
|
idamnjanovic@1
|
41 Queen Mary, University of London: http://www.elec.qmul.ac.uk/people/markp/
|
idamnjanovic@1
|
42 EPFL: http://people.epfl.ch/pierre.vandergheynst
|
idamnjanovic@1
|
43 Technion: http://www.cs.technion.ac.il/~elad/
|
idamnjanovic@1
|
44
|
idamnjanovic@1
|
45 ---------------------------------------------------------------------------
|
idamnjanovic@1
|
46
|
idamnjanovic@29
|
47 will download and install the following existing toolboxes
|
idamnjanovic@1
|
48 related to Sparse Representations, Compressed Sensing and Dictionary Learning:
|
idamnjanovic@1
|
49
|
idamnjanovic@1
|
50
|
idamnjanovic@29
|
51 - SPARCO (v.1.2) - set of sparse representation problems[5]
|
idamnjanovic@29
|
52 - SparseLab (v.2.1) - set of sparse solvers [1]
|
idamnjanovic@29
|
53 - Sparsify (v.0.4) - set of greedy and hard thresholding algorithms [2]
|
idamnjanovic@29
|
54 - SPGL1 (v.1.7) - large-scale sparse reconstruction solver [3]
|
idamnjanovic@29
|
55 - GPSR (v.6.0) - Gradient projection for sparse reconstruction [4]
|
idamnjanovic@29
|
56 - KSVD-box (v.13) and OMP-box (v.10) - dictionary learning [6]
|
idamnjanovic@29
|
57 - KSVDS-box (v.11) and OMPS-box (v.1) - sparse dictionary learning [7].
|
idamnjanovic@1
|
58
|
idamnjanovic@1
|
59
|
idamnjanovic@1
|
60
|
idamnjanovic@1
|
61 IMPORTANT:
|
idamnjanovic@1
|
62 In order to use SparseLab please register at
|
idamnjanovic@1
|
63 http://cgi.stanford.edu/group/sparselab/cgi-bin/register.pl
|
idamnjanovic@1
|
64
|
idamnjanovic@1
|
65 IMPORTANT:
|
idamnjanovic@1
|
66 To successfully install all toolboxes you will need to have MEX setup to compile C files.
|
idamnjanovic@1
|
67 If this is not already setup, run "mex -setup" or type "help mex" in the MATLAB command prompt.
|
idamnjanovic@1
|
68
|
idamnjanovic@1
|
69 IMPORTANT:
|
idamnjanovic@1
|
70 Because the toolboxes are downloaded automatically, you must have an internet connection
|
idamnjanovic@1
|
71 to successfully install SMALLbox.
|
idamnjanovic@29
|
72
|
idamnjanovic@29
|
73 IMPORTANT:
|
idamnjanovic@29
|
74 If you are running Matlab on MAC OSX or Linux, you must start Matlab with the jvm enabled.
|
idamnjanovic@1
|
75 Not doing so, will prevent you being able to unzip the downloaded toolboxes.
|
idamnjanovic@1
|
76
|
idamnjanovic@1
|
77 To install the toolbox run the command "SMALLboxsetup" from the MATLAB command prompt.
|
idamnjanovic@1
|
78
|
idamnjanovic@29
|
79 Once installed, there are two optional demo functions that can be run:
|
idamnjanovic@29
|
80
|
idamnjanovic@29
|
81 Example test of solvers from different toolboxes on Sparco compressed sensing problems and
|
idamnjanovic@29
|
82 Example test of dictionary learning techniques on image denoising problems
|
idamnjanovic@29
|
83
|
idamnjanovic@29
|
84 Further examples can be found in {SMALLbox root}/examples directory
|
idamnjanovic@1
|
85
|
idamnjanovic@1
|
86 ---------------------------------------------------------------------------
|
idamnjanovic@1
|
87
|
idamnjanovic@1
|
88 For more information on the SMALL Project, please visit the following website:
|
idamnjanovic@1
|
89
|
idamnjanovic@29
|
90 http://small-project.eu
|
idamnjanovic@1
|
91
|
idamnjanovic@1
|
92
|
luis@238
|
93 Contact: luis.figueira@soundsoftware.ac.uk
|
idamnjanovic@1
|
94
|
idamnjanovic@1
|
95 This code is in experimental stage; any comments or bug reports are
|
idamnjanovic@29
|
96 very welcome. More information about using SMALLbox will be includied in release version
|
idamnjanovic@29
|
97 documenation file.
|
idamnjanovic@29
|
98
|
idamnjanovic@29
|
99 References:
|
idamnjanovic@29
|
100
|
idamnjanovic@29
|
101 1. Donoho, D., Stodden, V., Tsaig, Y.: Sparselab. 2007, http://sparselab.stanford.edu/
|
idamnjanovic@29
|
102 2. Blumensath, T., Davies, M. E.: Gradient pursuits.
|
idamnjanovic@29
|
103 In IEEE Transactions on Signal Processing, vol. 56, no. 6, pp. 2370–2382, June 2008.
|
idamnjanovic@29
|
104 3. Berg, E. v., Friedlander, M. P.: Probing the pareto frontier for basis pursuit solutions.
|
idamnjanovic@29
|
105 In SIAM Journal on Scientific Computing, vol. 31, no. 2, pp. 890–912, 2008.
|
idamnjanovic@29
|
106 4. Figueiredo, M. A. T., Nowak, R. D., Wright, S. J.: Gradient projection for sparse
|
idamnjanovic@29
|
107 reconstruction: Application to compressed sensing and other inverse problems. In Journal
|
idamnjanovic@29
|
108 of Selected Topics in Signal Processing:Special Issue on Convex Optimization for Signal Processing, December 2007.
|
idamnjanovic@29
|
109 5. Berg, E. v., Friedlander, M. P., Hennenfent, G., Herrmann, F., Saab, R., Yilmaz, O.: Sparco:
|
idamnjanovic@29
|
110 A testing framework for sparse reconstruction. In ACM Trans. on Mathematical Software, 35(4):1-16, February 2009.
|
idamnjanovic@29
|
111 6. Aharon, M., Elad, M., Bruckstein, A. M.: The K-SVD: An algorithm for designing of overcomplete
|
idamnjanovic@29
|
112 dictionaries for sparse representation. In IEEE Transactions on Signal Processing, vol. 54, no. 11, pp. 4311–4322, 2006.
|
idamnjanovic@29
|
113 7. Rubinstein, R., Zibulevsky, M. and Elad, M.: Double Sparsity: Learning Sparse Dictionaries
|
idamnjanovic@29
|
114 for Sparse Signal Approximation. In IEEE Transactions on Signal Processing, Vol. 58, No. 3, Pages 1553-1564, March 2010.
|