annotate examples/Automatic Music Transcription/SMALL_AMT_SPAMS_test.m @ 231:b1db9e090542 luisf_dev

fixed comments
author luisf <luis.figueira@eecs.qmul.ac.uk>
date Wed, 18 Apr 2012 18:12:15 +0100
parents 9c418bea7f6a
children
rev   line source
ivan@128 1 %% Dictionary Learning for Automatic Music Transcription - SPAMS lambda
ivan@128 2 %% test
idamnjanovic@25 3 %
ivan@128 4 % *WARNING!* You should have SPAMS in your search path in order for this
ivan@128 5 % script to work.Due to licensing issues SPAMS can not be automatically
ivan@128 6 % provided in SMALLbox (http://www.di.ens.fr/willow/SPAMS/downloads.html).
ivan@128 7 %
idamnjanovic@6 8 % This file contains an example of how SMALLbox can be used to test diferent
idamnjanovic@6 9 % dictionary learning techniques in Automatic Music Transcription problem.
idamnjanovic@6 10 % It calls generateAMT_Learning_Problem that will let you to choose midi,
idamnjanovic@6 11 % wave or mat file to be transcribe. If file is midi it will be first
idamnjanovic@6 12 % converted to wave and original midi file will be used for comparison with
idamnjanovic@6 13 % results of dictionary learning and reconstruction.
idamnjanovic@6 14 % The function will generarte the Problem structure that is used to learn
idamnjanovic@6 15 % Problem.p notes spectrograms from training set Problem.b using
idamnjanovic@6 16 % dictionary learning technique defined in DL structure.
ivan@107 17
ivan@107 18 %
ivan@107 19 % Centre for Digital Music, Queen Mary, University of London.
ivan@107 20 % This file copyright 2010 Ivan Damnjanovic.
ivan@107 21 %
ivan@107 22 % This program is free software; you can redistribute it and/or
ivan@107 23 % modify it under the terms of the GNU General Public License as
ivan@107 24 % published by the Free Software Foundation; either version 2 of the
ivan@107 25 % License, or (at your option) any later version. See the file
ivan@107 26 % COPYING included with this distribution for more information.
idamnjanovic@6 27 %
idamnjanovic@6 28 %%
idamnjanovic@6 29
idamnjanovic@6 30 clear;
idamnjanovic@6 31
idamnjanovic@6 32
idamnjanovic@6 33 % Defining Automatic Transcription of Piano tune as Dictionary Learning
idamnjanovic@6 34 % Problem
idamnjanovic@6 35
ivan@161 36 SMALL.Problem = generateAMTProblem();
idamnjanovic@6 37 TPmax=0;
idamnjanovic@6 38 %%
idamnjanovic@6 39 for i=1:10
idamnjanovic@6 40 %%
idamnjanovic@6 41 % Solving AMT problem using non-negative sparse coding with
idamnjanovic@6 42 % SPAMS online dictionary learning (Julien Mairal 2009)
idamnjanovic@6 43 %
idamnjanovic@6 44
idamnjanovic@6 45 % Initialising Dictionary structure
idamnjanovic@6 46 % Setting Dictionary structure fields (toolbox, name, param, D and time)
idamnjanovic@6 47 % to zero values
idamnjanovic@6 48
idamnjanovic@6 49 SMALL.DL(i)=SMALL_init_DL();
idamnjanovic@6 50
idamnjanovic@6 51 % Defining fields needed for dictionary learning
idamnjanovic@6 52
idamnjanovic@6 53 SMALL.DL(i).toolbox = 'SPAMS';
idamnjanovic@6 54 SMALL.DL(i).name = 'mexTrainDL';
idamnjanovic@6 55
idamnjanovic@6 56 % We test SPAMS for ten different values of parameter lambda
idamnjanovic@6 57 % Type 'help mexTrainDL in MATLAB prompt for explanation of parameters.
idamnjanovic@6 58
idamnjanovic@6 59 lambda(i)=1.4+0.2*i;
idamnjanovic@6 60
idamnjanovic@6 61 SMALL.DL(i).param=struct(...
idamnjanovic@6 62 'K', SMALL.Problem.p,...
idamnjanovic@6 63 'lambda', lambda(i),...
idamnjanovic@6 64 'iter', 300,...
idamnjanovic@6 65 'posAlpha', 1,...
idamnjanovic@6 66 'posD', 1,...
idamnjanovic@6 67 'whiten', 0,...
idamnjanovic@6 68 'mode', 2);
idamnjanovic@6 69
idamnjanovic@6 70 % Learn the dictionary
idamnjanovic@6 71
idamnjanovic@6 72 SMALL.DL(i) = SMALL_learn(SMALL.Problem, SMALL.DL(i));
idamnjanovic@6 73
idamnjanovic@6 74 % Set SMALL.Problem.A dictionary and reconstruction function
idamnjanovic@6 75 % (backward compatiblity with SPARCO: solver structure communicate
idamnjanovic@6 76 % only with Problem structure, ie no direct communication between DL and
idamnjanovic@6 77 % solver structures)
idamnjanovic@6 78
idamnjanovic@6 79 SMALL.Problem.A = SMALL.DL(i).D;
ivan@161 80 SMALL.Problem.reconstruct=@(x) AMT_reconstruct(x, SMALL.Problem);
idamnjanovic@6 81
idamnjanovic@6 82
idamnjanovic@6 83 %%
idamnjanovic@6 84 % Initialising solver structure
idamnjanovic@6 85 % Setting solver structure fields (toolbox, name, param, solution,
idamnjanovic@6 86 % reconstructed and time) to zero values
idamnjanovic@6 87 % As an example, SPAMS (Julien Mairal 2009) implementation of LARS
idamnjanovic@6 88 % algorithm is used for representation of training set in the learned
idamnjanovic@6 89 % dictionary.
idamnjanovic@6 90
idamnjanovic@6 91 SMALL.solver(1)=SMALL_init_solver;
idamnjanovic@6 92
idamnjanovic@6 93 % Defining the parameters needed for sparse representation
idamnjanovic@6 94
idamnjanovic@6 95 SMALL.solver(1).toolbox='SPAMS';
idamnjanovic@6 96 SMALL.solver(1).name='mexLasso';
idamnjanovic@6 97
idamnjanovic@6 98 % Here we use mexLasso mode=2, with lambda=3, lambda2=0 and positivity
idamnjanovic@6 99 % constrain (type 'help mexLasso' for more information about modes):
idamnjanovic@6 100 %
idamnjanovic@6 101 % min_{alpha_i} (1/2)||x_i-Dalpha_i||_2^2 + lambda||alpha_i||_1 + (1/2)lambda2||alpha_i||_2^2
idamnjanovic@6 102
idamnjanovic@6 103 SMALL.solver(1).param=struct(...
idamnjanovic@6 104 'lambda', 3,...
idamnjanovic@6 105 'pos', 1,...
idamnjanovic@6 106 'mode', 2);
idamnjanovic@6 107
idamnjanovic@6 108 % Call SMALL_soolve to represent the signal in the given dictionary.
idamnjanovic@6 109 % As a final command SMALL_solve will call above defined reconstruction
idamnjanovic@6 110 % function to reconstruct the training set (Problem.b) in the learned
idamnjanovic@6 111 % dictionary (Problem.A)
idamnjanovic@6 112
idamnjanovic@6 113 SMALL.solver(1)=SMALL_solve(SMALL.Problem, SMALL.solver(1));
idamnjanovic@6 114
idamnjanovic@6 115 %%
idamnjanovic@6 116 % Analysis of the result of automatic music transcription. If groundtruth
idamnjanovic@6 117 % exists, we can compare transcribed notes and original and get usual
idamnjanovic@6 118 % True Positives, False Positives and False Negatives measures.
idamnjanovic@6 119
idamnjanovic@6 120 AMT_res(i) = AMT_analysis(SMALL.Problem, SMALL.solver(1));
idamnjanovic@6 121 if AMT_res(i).TP>TPmax
idamnjanovic@6 122 TPmax=AMT_res(i).TP;
idamnjanovic@6 123 BLmidi=SMALL.solver(1).reconstructed.midi;
idamnjanovic@6 124 writemidi(SMALL.solver(1).reconstructed.midi, ['testL',i,'.mid']);
idamnjanovic@6 125 max=i;
idamnjanovic@6 126 end
idamnjanovic@6 127 end %end of for loop
idamnjanovic@6 128 %%
idamnjanovic@6 129 % Plot results and save midi files
idamnjanovic@6 130
idamnjanovic@6 131 figAMTbest=SMALL_AMT_plot(SMALL, AMT_res(max));
idamnjanovic@6 132
idamnjanovic@6 133 resFig=figure('Name', 'Automatic Music Transcription SPAMS lambda TEST');
idamnjanovic@6 134
idamnjanovic@6 135 subplot (3,1,1); plot(lambda(:), [AMT_res(:).TP], 'ro-');
idamnjanovic@6 136 title('True Positives vs lambda');
idamnjanovic@6 137
idamnjanovic@6 138 subplot (3,1,2); plot(lambda(:), [AMT_res(:).FN], 'ro-');
idamnjanovic@6 139 title('False Negatives vs lambda');
idamnjanovic@6 140
idamnjanovic@6 141 subplot (3,1,3); plot(lambda(:), [AMT_res(:).FP], 'ro-');
idamnjanovic@6 142 title('False Positives vs lambda');
idamnjanovic@6 143
idamnjanovic@6 144 FS=filesep;
luis@186 145 [pathstr1, name, ext] = fileparts(which('SMALLboxSetup.m'));
idamnjanovic@6 146 cd([pathstr1,FS,'results']);
idamnjanovic@6 147 [filename,pathname] = uiputfile({' *.mid;' },'Save midi');
idamnjanovic@6 148 if filename~=0 writemidi(BLmidi, [pathname,FS,filename]);end
idamnjanovic@6 149 [filename,pathname] = uiputfile({' *.fig;' },'Save figure TP/FN/FP vs lambda');
idamnjanovic@6 150 if filename~=0 saveas(resFig, [pathname,FS,filename]);end
idamnjanovic@6 151
idamnjanovic@6 152 [filename,pathname] = uiputfile({' *.fig;' },'Save BEST AMT figure');
idamnjanovic@6 153 if filename~=0 saveas(figAMTbest, [pathname,FS,filename]);end
idamnjanovic@6 154
idamnjanovic@6 155