annotate DL/Majorization Minimization DL/ExactDicoRecovery/ksvd_cn.m @ 224:fd0b5d36f6ad
danieleb
Updated the contents of this branch with the contents of the default branch.
author |
luisf <luis.figueira@eecs.qmul.ac.uk> |
date |
Thu, 12 Apr 2012 13:52:28 +0100 |
parents |
b14209313ba4 |
children |
|
rev |
line source |
ivan@155
|
1 % K-SVD algorithm for Dictionary Learning
|
ivan@155
|
2 % Y = input data (M X L matrix)
|
ivan@155
|
3 % Phi = initial dictionary (M X N), e.g. random dictionary or first N data samples
|
ivan@155
|
4 % lambda = regularization coefficient (||Phi*X-Y||_F)^2 + lambda*||X||_1
|
ivan@155
|
5 % IT = number of iterations
|
ivan@155
|
6 function [Phiout,X,ert] = ksvd_cn(Y,Phi,lambda,IT)
|
ivan@155
|
7 maxIT = 1000;
|
ivan@155
|
8 [PhiN,PhiM] = size(Phi);
|
ivan@155
|
9 RR1 = PhiM;
|
ivan@155
|
10 %%%%%%%%%%%%%%
|
ivan@155
|
11 % [PhiM,L] = size(ud);
|
ivan@155
|
12 [PhiN,L] = size(Y);
|
ivan@155
|
13 X = ones(PhiM,L);
|
ivan@155
|
14 for it = 1:IT
|
ivan@155
|
15 to = .1+svds(Phi,1);
|
ivan@155
|
16 [PhiN,PhiM] = size(Phi);
|
ivan@155
|
17 %%%%
|
ivan@155
|
18 eps = 3*10^-4;
|
ivan@155
|
19 map = 1; % Projecting on the selected space (0=no,1=yes)
|
ivan@155
|
20 [X,l1err] = mm1(Phi,Y,X,to,lambda,maxIT,eps,map); %% Sparse approximation with Iterative Soft-thresholding
|
ivan@155
|
21 ert(it) = l1err;
|
ivan@155
|
22 %%%
|
ivan@155
|
23 [Phi,X] = dict_update_KSVD_cn(Phi,Y,X);
|
ivan@155
|
24 end
|
ivan@155
|
25 Phiout = Phi; |