idamnjanovic@6
|
1 %% DICTIONARY LEARNING FOR IMAGE DENOISING
|
idamnjanovic@6
|
2 % This file contains an example of how SMALLbox can be used to test different
|
idamnjanovic@6
|
3 % dictionary learning techniques in Image Denoising problem.
|
idamnjanovic@6
|
4 % This example can be used to test SPAMS for different values of
|
idamnjanovic@6
|
5 % parameter lambda. In no way it represents extensive testing of image
|
idamnjanovic@6
|
6 % denoising. It should only give an idea how SMALL structure can be used
|
idamnjanovic@6
|
7 % for testing.
|
idamnjanovic@6
|
8 %
|
idamnjanovic@6
|
9 % Ivan Damnjanovic 2010
|
idamnjanovic@6
|
10 %%
|
idamnjanovic@6
|
11
|
idamnjanovic@6
|
12 clear all;
|
idamnjanovic@6
|
13
|
idamnjanovic@6
|
14 %% Load an image
|
idamnjanovic@6
|
15 TMPpath=pwd;
|
idamnjanovic@6
|
16 FS=filesep;
|
idamnjanovic@6
|
17 [pathstr1, name, ext, versn] = fileparts(which('SMALLboxSetup.m'));
|
idamnjanovic@6
|
18 cd([pathstr1,FS,'data',FS,'images']);
|
idamnjanovic@6
|
19 [filename,pathname] = uigetfile({'*.png;'},'Select a file containin pre-calculated notes');
|
idamnjanovic@6
|
20 [pathstr, name, ext, versn] = fileparts(filename);
|
idamnjanovic@6
|
21 test_image = imread(filename);
|
idamnjanovic@6
|
22 test_image = double(test_image);
|
idamnjanovic@6
|
23 cd(TMPpath);
|
idamnjanovic@6
|
24 %%
|
idamnjanovic@6
|
25
|
idamnjanovic@6
|
26 % number of different values we want to test
|
idamnjanovic@6
|
27
|
idamnjanovic@6
|
28 n =4;
|
idamnjanovic@6
|
29
|
idamnjanovic@6
|
30 lambda=zeros(1,n);
|
idamnjanovic@6
|
31 time = zeros(2,n);
|
idamnjanovic@6
|
32 psnr = zeros(2,n);
|
idamnjanovic@6
|
33
|
idamnjanovic@6
|
34 for i=1:n
|
idamnjanovic@6
|
35
|
idamnjanovic@6
|
36 % Here we want to test time spent and quality of denoising for
|
idamnjanovic@6
|
37 % different lambda parameters.
|
idamnjanovic@6
|
38
|
idamnjanovic@6
|
39 lambda(i)=1+i*0.5;
|
idamnjanovic@6
|
40
|
idamnjanovic@6
|
41 % Defining Image Denoising Problem as Dictionary Learning Problem.
|
idamnjanovic@6
|
42
|
idamnjanovic@6
|
43 SMALL.Problem = generateImageDenoiseProblem(test_image);
|
idamnjanovic@6
|
44 SMALL.Problem.name=name;
|
idamnjanovic@6
|
45 %%
|
idamnjanovic@6
|
46 % Use SPAMS Online Dictionary Learning Algorithm
|
idamnjanovic@6
|
47 % to Learn overcomplete dictionary (Julien Mairal 2009)
|
idamnjanovic@6
|
48
|
idamnjanovic@6
|
49 % Initialising Dictionary structure
|
idamnjanovic@6
|
50 % Setting Dictionary structure fields (toolbox, name, param, D and time)
|
idamnjanovic@6
|
51 % to zero values
|
idamnjanovic@6
|
52
|
idamnjanovic@6
|
53 SMALL.DL(1)=SMALL_init_DL();
|
idamnjanovic@6
|
54
|
idamnjanovic@6
|
55 % Defining fields needed for dictionary learning
|
idamnjanovic@6
|
56
|
idamnjanovic@6
|
57 SMALL.DL(1).toolbox = 'SPAMS';
|
idamnjanovic@6
|
58 SMALL.DL(1).name = 'mexTrainDL';
|
idamnjanovic@6
|
59
|
idamnjanovic@6
|
60 % Type 'help mexTrainDL in MATLAB prompt for explanation of parameters.
|
idamnjanovic@6
|
61
|
idamnjanovic@6
|
62 SMALL.DL(1).param=struct(...
|
idamnjanovic@6
|
63 'D', SMALL.Problem.initdict,...
|
idamnjanovic@6
|
64 'K', SMALL.Problem.p,...
|
idamnjanovic@6
|
65 'lambda', lambda(i),...
|
idamnjanovic@6
|
66 'iter', 200,...
|
idamnjanovic@6
|
67 'mode', 3,...
|
idamnjanovic@6
|
68 'modeD', 0);
|
idamnjanovic@6
|
69
|
idamnjanovic@6
|
70 % Learn the dictionary
|
idamnjanovic@6
|
71
|
idamnjanovic@6
|
72 SMALL.DL(1) = SMALL_learn(SMALL.Problem, SMALL.DL(1));
|
idamnjanovic@6
|
73
|
idamnjanovic@6
|
74 % Set SMALL.Problem.A dictionary
|
idamnjanovic@6
|
75 % (backward compatiblity with SPARCO: solver structure communicate
|
idamnjanovic@6
|
76 % only with Problem structure, ie no direct communication between DL and
|
idamnjanovic@6
|
77 % solver structures)
|
idamnjanovic@6
|
78
|
idamnjanovic@6
|
79 SMALL.Problem.A = SMALL.DL(1).D;
|
idamnjanovic@6
|
80
|
idamnjanovic@6
|
81
|
idamnjanovic@6
|
82 %%
|
idamnjanovic@6
|
83 % Initialising solver structure
|
idamnjanovic@6
|
84 % Setting solver structure fields (toolbox, name, param, solution,
|
idamnjanovic@6
|
85 % reconstructed and time) to zero values
|
idamnjanovic@6
|
86
|
idamnjanovic@6
|
87 SMALL.solver(1)=SMALL_init_solver;
|
idamnjanovic@6
|
88
|
idamnjanovic@6
|
89 % Defining the parameters needed for sparse representation
|
idamnjanovic@6
|
90
|
idamnjanovic@6
|
91 SMALL.solver(1).toolbox='ompbox';
|
idamnjanovic@6
|
92 SMALL.solver(1).name='ompdenoise';
|
idamnjanovic@6
|
93
|
idamnjanovic@6
|
94 % Denoising the image - SMALL_denoise function is similar to SMALL_solve,
|
idamnjanovic@6
|
95 % but backward compatible with KSVD definition of denoising
|
idamnjanovic@6
|
96
|
idamnjanovic@6
|
97 SMALL.solver(1)=SMALL_denoise(SMALL.Problem, SMALL.solver(1));
|
idamnjanovic@6
|
98
|
idamnjanovic@6
|
99
|
idamnjanovic@6
|
100 %% show results %%
|
idamnjanovic@6
|
101 % This will show denoised image and dictionary for all lambdas. If you
|
idamnjanovic@6
|
102 % are not interested to see it and do not want clutter your screen
|
idamnjanovic@6
|
103 % comment following line
|
idamnjanovic@6
|
104
|
idamnjanovic@6
|
105 SMALL_ImgDeNoiseResult(SMALL);
|
idamnjanovic@6
|
106
|
idamnjanovic@6
|
107
|
idamnjanovic@6
|
108 time(1,i) = SMALL.DL(1).time;
|
idamnjanovic@6
|
109 psnr(1,i) = SMALL.solver(1).reconstructed.psnr;
|
idamnjanovic@6
|
110
|
idamnjanovic@6
|
111 clear SMALL
|
idamnjanovic@6
|
112 end
|
idamnjanovic@6
|
113
|
idamnjanovic@6
|
114 %% show time and psnr %%
|
idamnjanovic@6
|
115 figure('Name', 'SPAMS LAMBDA TEST');
|
idamnjanovic@6
|
116
|
idamnjanovic@6
|
117 subplot(1,2,1); plot(lambda, time(1,:), 'ro-');
|
idamnjanovic@6
|
118 title('time vs lambda');
|
idamnjanovic@6
|
119 subplot(1,2,2); plot(lambda, psnr(1,:), 'b*-');
|
idamnjanovic@6
|
120 title('PSNR vs lambda');
|
idamnjanovic@6
|
121
|