idamnjanovic@8
|
1 function DL = SMALL_learn(Problem,DL)
|
idamnjanovic@8
|
2 %%% SMALL Dictionary Learning
|
idamnjanovic@24
|
3 %
|
idamnjanovic@24
|
4 % Centre for Digital Music, Queen Mary, University of London.
|
idamnjanovic@24
|
5 % This file copyright 2009 Ivan Damnjanovic.
|
idamnjanovic@24
|
6 %
|
idamnjanovic@24
|
7 % This program is free software; you can redistribute it and/or
|
idamnjanovic@24
|
8 % modify it under the terms of the GNU General Public License as
|
idamnjanovic@24
|
9 % published by the Free Software Foundation; either version 2 of the
|
idamnjanovic@24
|
10 % License, or (at your option) any later version. See the file
|
idamnjanovic@24
|
11 % COPYING included with this distribution for more information.
|
idamnjanovic@24
|
12 %
|
idamnjanovic@8
|
13 % Function gets as input Problem and Dictionary Learning (DL) structures
|
idamnjanovic@8
|
14 % In Problem structure field b with the training set needs to be defined
|
idamnjanovic@8
|
15 % In DL fields with name of the toolbox and solver, and parameters file
|
idamnjanovic@8
|
16 % for particular dictionary learning technique needs to be present.
|
idamnjanovic@8
|
17 %
|
idamnjanovic@8
|
18 % Outputs are Learned dictionary and time spent as a part of DL structure
|
idamnjanovic@8
|
19 %%
|
idamnjanovic@8
|
20
|
idamnjanovic@8
|
21 fprintf('\nStarting Dictionary Learning %s... \n', DL.name);
|
idamnjanovic@8
|
22 start=cputime;
|
idamnjanovic@36
|
23 tStart=tic;
|
idamnjanovic@8
|
24 if strcmpi(DL.toolbox,'KSVD')
|
idamnjanovic@8
|
25 param=DL.param;
|
idamnjanovic@8
|
26 param.data=Problem.b;
|
idamnjanovic@8
|
27
|
idamnjanovic@36
|
28 D = eval([DL.name,'(param)']);%, ''t'', 5);']);
|
idamnjanovic@8
|
29 elseif strcmpi(DL.toolbox,'KSVDS')
|
idamnjanovic@8
|
30 param=DL.param;
|
idamnjanovic@8
|
31 param.data=Problem.b;
|
idamnjanovic@8
|
32
|
idamnjanovic@8
|
33 D = eval([DL.name,'(param, ''t'', 5);']);
|
idamnjanovic@8
|
34 elseif strcmpi(DL.toolbox,'SPAMS')
|
idamnjanovic@8
|
35
|
idamnjanovic@8
|
36 X = Problem.b;
|
idamnjanovic@8
|
37 param=DL.param;
|
idamnjanovic@8
|
38
|
idamnjanovic@8
|
39 D = eval([DL.name,'(X, param);']);
|
idamnjanovic@8
|
40 % As some versions of SPAMS does not produce unit norm column
|
idamnjanovic@8
|
41 % dictionaries, we need to make sure that columns are normalised to
|
idamnjanovic@8
|
42 % unit lenght.
|
idamnjanovic@8
|
43
|
idamnjanovic@8
|
44 for i = 1: size(D,2)
|
idamnjanovic@8
|
45 D(:,i)=D(:,i)/norm(D(:,i));
|
idamnjanovic@8
|
46 end
|
idamnjanovic@36
|
47 elseif strcmpi(DL.toolbox,'SMALL')
|
idamnjanovic@8
|
48
|
idamnjanovic@36
|
49 X = Problem.b;
|
idamnjanovic@36
|
50 param=DL.param;
|
idamnjanovic@36
|
51
|
idamnjanovic@36
|
52 D = eval([DL.name,'(X, param);']);
|
idamnjanovic@36
|
53 % we need to make sure that columns are normalised to
|
idamnjanovic@36
|
54 % unit lenght.
|
idamnjanovic@36
|
55
|
idamnjanovic@36
|
56 for i = 1: size(D,2)
|
idamnjanovic@36
|
57 D(:,i)=D(:,i)/norm(D(:,i));
|
idamnjanovic@36
|
58 end
|
idamnjanovic@36
|
59 elseif strcmpi(DL.toolbox,'mpv2')
|
idamnjanovic@36
|
60 X = Problem.b(:,1:1:40000);
|
idamnjanovic@36
|
61 jD0 = mpv2.SimpleMatrix(DL.param.D);
|
idamnjanovic@36
|
62 jDicLea = mpv2.DictionaryLearning(jD0, 1,1);
|
idamnjanovic@36
|
63 % !!!!! MAYBE lambda is not needed for ILS - NEED TO CHECK!!!!
|
idamnjanovic@36
|
64 jDicLea.setLambda('L', DL.param.lambda, DL.param.lambda, 1000);
|
idamnjanovic@36
|
65 jDicLea.setVerbose(2);
|
idamnjanovic@36
|
66 jDicLea.setORMP(16, 1e-6, DL.param.abs);
|
idamnjanovic@36
|
67 eval(['jDicLea.',DL.name,'( X(:), DL.param.iternum );']);
|
idamnjanovic@36
|
68 jD = jDicLea.getDictionary();
|
idamnjanovic@36
|
69
|
idamnjanovic@36
|
70 D = reshape(jD.getAll(), size(X,1), DL.param.K);
|
idamnjanovic@36
|
71
|
idamnjanovic@8
|
72 % To introduce new dictionary learning technique put the files in
|
idamnjanovic@8
|
73 % your Matlab path. Next, unique name <TolboxID> for your toolbox needs
|
idamnjanovic@8
|
74 % to be defined and also prefferd API for toolbox functions <Preffered_API>
|
idamnjanovic@8
|
75 %
|
idamnjanovic@8
|
76 % elseif strcmpi(DL.toolbox,'<ToolboxID>')
|
idamnjanovic@8
|
77 % % This is an example of API that can be used:
|
idamnjanovic@8
|
78 % % - get training set from Problem part of structure
|
idamnjanovic@8
|
79 % % - assign parameters defined in the main program
|
idamnjanovic@8
|
80 %
|
idamnjanovic@8
|
81 % X = Problem.b;
|
idamnjanovic@8
|
82 % param=DL.param;
|
idamnjanovic@8
|
83 %
|
idamnjanovic@8
|
84 % % - Evaluate the function (DL.name - defined in the main) with
|
idamnjanovic@8
|
85 % % parameters given above
|
idamnjanovic@8
|
86 %
|
idamnjanovic@8
|
87 % D = eval([DL.name,'(<Preffered_API>);']);
|
idamnjanovic@8
|
88
|
idamnjanovic@8
|
89 else
|
idamnjanovic@8
|
90 printf('\nToolbox has not been registered. Please change SMALL_learn file.\n');
|
idamnjanovic@8
|
91 return
|
idamnjanovic@8
|
92 end
|
idamnjanovic@8
|
93
|
idamnjanovic@8
|
94 %%
|
idamnjanovic@8
|
95 % Dictionary Learning time
|
idamnjanovic@36
|
96 tElapsed=toc(tStart);
|
idamnjanovic@8
|
97 DL.time = cputime - start;
|
maria@86
|
98 fprintf('\n%s finished task in %2f seconds (cpu time). \n', DL.name, DL.time);
|
maria@86
|
99 fprintf('\n%s finished task in %2f seconds (tic-toc time). \n', DL.name, tElapsed);
|
idamnjanovic@36
|
100 DL.time=tElapsed;
|
idamnjanovic@8
|
101 % If dictionary is given as a sparse matrix change it to full
|
idamnjanovic@8
|
102
|
idamnjanovic@8
|
103 DL.D = full(D);
|
idamnjanovic@8
|
104
|
idamnjanovic@8
|
105 end
|
idamnjanovic@8
|
106 |