annotate util/classes/dictionaryMatrices/iterativeprojections.m @ 174:dc2f0fa21310 danieleb

multiple trials with error bars
author Daniele Barchiesi <daniele.barchiesi@eecs.qmul.ac.uk>
date Thu, 17 Nov 2011 11:16:15 +0000
parents 68fb71aa5339
children 8fc38e8df8c6
rev   line source
daniele@170 1 function [dic mus srs] = iterativeprojections(dic,mu,Y,X,params)
daniele@169 2 % grassmanian attempts to create an n by m matrix with minimal mutual
daniele@169 3 % coherence using an iterative projection method.
daniele@169 4 %
daniele@170 5 % REFERENCE
daniele@169 6 %
daniele@169 7
daniele@169 8 %% Parameters and Defaults
daniele@170 9 if ~nargin, testiterativeprojections; return; end
daniele@169 10
daniele@170 11 if ~exist('params','var') || isempty(param), params = struct; end
daniele@170 12 if ~isfield(params,'nIter'), params.nIter = 10; end %number of iterations
daniele@170 13 if ~isfield(params,'eps'), params.eps = 1e-9; end %tolerance level
daniele@170 14 [n m] = size(dic);
daniele@169 15
daniele@170 16 SNR = @(dic) snr(Y,dic*X); %SNR function
daniele@170 17 MU = @(dic) max(max(abs((dic'*dic)-diag(diag(dic'*dic))))); %coherence function
daniele@169 18
daniele@170 19 %% Main algorithm
daniele@170 20 dic = normc(dic); %normalise columns
daniele@170 21 alpha = m/n; %ratio between number of atoms and ambient dimension
daniele@170 22
daniele@170 23 mus = zeros(params.nIter,1); %coherence at each iteration
daniele@170 24 srs = zeros(params.nIter,1); %signal to noise ratio at each iteration
daniele@170 25 iIter = 1;
daniele@170 26 while iIter<=params.nIter && MU(dic)>mu
daniele@170 27 fprintf(1,'Iteration number %u\n', iIter);
daniele@170 28 % calculate snr and coherence
daniele@170 29 mus(iIter) = MU(dic);
daniele@170 30 srs(iIter) = SNR(dic);
daniele@170 31
daniele@170 32 % calculate gram matrix
daniele@170 33 G = dic'*dic;
daniele@170 34
daniele@170 35 % project into the structural constraint set
daniele@170 36 H = zeros(size(G)); %initialise matrix
daniele@170 37 ind1 = find(abs(G(:))<=mu); %find elements smaller than mu
daniele@170 38 ind2 = find(abs(G(:))>mu); %find elements bigger than mu
daniele@170 39 H(ind1) = G(ind1); %copy elements belonging to ind1
daniele@170 40 H(ind2) = mu*sign(G(ind2)); %threshold elements belonging to ind2
daniele@170 41 H(1:m+1:end) = 1; %set diagonal to one
daniele@170 42
daniele@170 43 % project into spectral constraint set
daniele@170 44 [~ , S, V] = svd(H);
daniele@170 45 %G = alpha*(V(:,1:n)*V(:,1:n)');
daniele@170 46 G = V(:,1:n)*S(1:n,1:n)*V(:,1:n)';
daniele@170 47
daniele@170 48 % calculate dictionary
daniele@170 49 [~, S V] = svd(G);
daniele@170 50 dic = sqrt(S(1:n,:))*V';
daniele@170 51
daniele@170 52 % rotate dictionary
daniele@170 53 options = struct('nIter',100,'step',0.001);
daniele@170 54 [~, ~, W] = rotatematrix(Y,dic*X,'conjgradlie',options);
daniele@170 55 dic = W*dic;
daniele@170 56
daniele@170 57 iIter = iIter+1;
daniele@169 58 end
daniele@170 59 if iIter<params.nIter
daniele@170 60 mus(iIter:end) = mus(iIter);
daniele@170 61 srs(iIter:end) = srs(iIter);
daniele@170 62 end
daniele@170 63 % Test function
daniele@170 64 function testiterativeprojections
daniele@170 65 clc
daniele@170 66 %define parameters
daniele@170 67 n = 256; %ambient dimension
daniele@170 68 m = 512; %number of atoms
daniele@170 69 N = 1024; %number of signals
daniele@170 70 mu_min = sqrt((m-n)/(n*(m-1))); %minimum coherence
daniele@169 71
daniele@170 72 %initialise data
daniele@170 73 X = sprandn(m,N,1); %matrix of coefficients
daniele@170 74 phi = normc(randn(n,m)); %dictionary
daniele@170 75 temp = randn(n);
daniele@170 76 W = expm(0.5*(temp-temp')); %rotation matrix
daniele@170 77 Y = W*phi*X; %observed signals
daniele@169 78
daniele@170 79 %optimise dictionary
daniele@170 80 [~, mus srs] = iterativeprojections(phi,0.2,Y,X);
daniele@169 81
daniele@170 82 %plot results
daniele@170 83 nIter = length(mus);
daniele@169 84
daniele@170 85 figure,
daniele@170 86 subplot(2,1,1)
daniele@170 87 plot(1:nIter,srs,'kd-');
daniele@170 88 xlabel('nIter');
daniele@170 89 ylabel('snr (dB)');
daniele@170 90 grid on
daniele@169 91
daniele@170 92 subplot(2,1,2), hold on
daniele@170 93 plot(1:nIter,mus,'ko-');
daniele@170 94 plot([1 nIter],[mu_min mu_min],'k')
daniele@170 95 grid on
daniele@170 96 legend('\mu','\mu_{min}');
daniele@169 97