ivan@154
|
1 function [x_hat, numiter, x_path] = one_ALPS(y, Phi, K, params)
|
ivan@154
|
2 % =========================================================================
|
ivan@154
|
3 % 1-ALPS(#) algorithm - Beta Version
|
ivan@154
|
4 % =========================================================================
|
ivan@154
|
5 % Algebraic Pursuit (ALPS) algorithm with 1-memory acceleration.
|
ivan@154
|
6 %
|
ivan@154
|
7 % Detailed discussion on the algorithm can be found in
|
ivan@154
|
8 % [1] "On Accelerated Hard Thresholding Methods for Sparse Approximation", written
|
ivan@154
|
9 % by Volkan Cevher, Technical Report, 2011.
|
ivan@154
|
10 % =========================================================================
|
ivan@154
|
11 % INPUT ARGUMENTS:
|
ivan@154
|
12 % y M x 1 undersampled measurement vector.
|
ivan@154
|
13 % Phi M x N regression matrix.
|
ivan@154
|
14 % K Sparsity of underlying vector x* or desired
|
ivan@154
|
15 % sparsity of solution.
|
ivan@154
|
16 % params Structure of parameters. These are:
|
ivan@154
|
17 %
|
ivan@154
|
18 % tol,... Early stopping tolerance. Default value: tol =
|
ivan@154
|
19 % 1-e5.
|
ivan@154
|
20 % ALPSiters,... Maximum number of algorithm iterations. Default
|
ivan@154
|
21 % value: 300.
|
ivan@154
|
22 % solveNewtonb,... If solveNewtonb == 1: Corresponds to solving a
|
ivan@154
|
23 % Newton system restricted to a sparse support.
|
ivan@154
|
24 % It is implemented via conjugate gradients.
|
ivan@154
|
25 % If solveNewtonb == 0: Step size selection as described
|
ivan@154
|
26 % in eqs. (12) and (13) in [1].
|
ivan@154
|
27 % Default value: solveNewtonb = 0.
|
ivan@154
|
28 % gradientDescentx,... If gradientDescentx == 1: single gradient
|
ivan@154
|
29 % update of x_{i+1} restricted ot its support with
|
ivan@154
|
30 % line search. Default value: gradientDescentx =
|
ivan@154
|
31 % 1.
|
ivan@154
|
32 % solveNewtonx,... If solveNewtonx == 1: Akin to Hard Thresholding Pursuit
|
ivan@154
|
33 % (c.f. Simon Foucart, "Hard Thresholding Pursuit,"
|
ivan@154
|
34 % preprint, 2010). Default vale: solveNewtonx = 0.
|
ivan@154
|
35 % tau,... Variable that controls the momentum in
|
ivan@154
|
36 % non-memoryless case. Ignored in memoryless
|
ivan@154
|
37 % case. Default value: tau = 1/2.
|
ivan@154
|
38 % Special cases:
|
ivan@154
|
39 % - tau = 0: momentum step size selection is
|
ivan@154
|
40 % driven by the following formulas:
|
ivan@154
|
41 % a_1 = 1;
|
ivan@154
|
42 % a_{i+1} = (1+\sqrt(1+4a_i^2)/2;
|
ivan@154
|
43 % tau = (a_i - 1)/(a_{i+1});
|
ivan@154
|
44 % described in [2] "A fast iterative
|
ivan@154
|
45 % shrinkage-thresholding algorithm for linear
|
ivan@154
|
46 % inverse problems", Beck A., and Teboulle M.
|
ivan@154
|
47 % - tau = -1: momentum step size is automatically
|
ivan@154
|
48 % optimized in every step.
|
ivan@154
|
49 % - tau as a function handle: user defined
|
ivan@154
|
50 % behavior of tau momentum term.
|
ivan@154
|
51 % mu,... Variable that controls the step size selection.
|
ivan@154
|
52 % When mu = 0, step size is computed adaptively
|
ivan@154
|
53 % per iteration. Default value: mu = 0.
|
ivan@154
|
54 % cg_maxiter,... Maximum iterations for Conjugate-Gradients method.
|
ivan@154
|
55 % cg_tol Tolerance variable for Conjugate-Gradients method.
|
ivan@154
|
56 % =========================================================================
|
ivan@154
|
57 % OUTPUT ARGUMENTS:
|
ivan@154
|
58 % x_hat N x 1 recovered K-sparse vector.
|
ivan@154
|
59 % numiter Number of iterations executed.
|
ivan@154
|
60 % x_path Keeps a series of computed N x 1 K-sparse vectors
|
ivan@154
|
61 % until the end of the iterative process.
|
ivan@154
|
62 % =========================================================================
|
ivan@154
|
63 % 01/04/2011, by Anastasios Kyrillidis. anastasios.kyrillidis@epfl.ch, EPFL.
|
ivan@154
|
64 % =========================================================================
|
ivan@154
|
65 % cgsolve.m is written by Justin Romberg, Caltech, Oct. 2005.
|
ivan@154
|
66 % Email: jrom@acm.caltech.edu
|
ivan@154
|
67 % =========================================================================
|
ivan@154
|
68 % This work was supported in part by the European Commission under Grant
|
ivan@154
|
69 % MIRG-268398 and DARPA KeCoM program #11-DARPA-1055. VC also would like
|
ivan@154
|
70 % to acknowledge Rice University for his Faculty Fellowship.
|
ivan@154
|
71 % =========================================================================
|
ivan@154
|
72
|
ivan@154
|
73 [M,N] = size(Phi);
|
ivan@154
|
74
|
ivan@154
|
75 %% Initialize transpose of measurement matrix
|
ivan@154
|
76
|
ivan@154
|
77 Phi_t = Phi';
|
ivan@154
|
78
|
ivan@154
|
79 %% Initialize to zero vector
|
ivan@154
|
80 x_cur = zeros(N,1);
|
ivan@154
|
81 y_cur = zeros(N,1);
|
ivan@154
|
82 Phi_x_cur = zeros(M,1);
|
ivan@154
|
83 Y_i = [];
|
ivan@154
|
84
|
ivan@154
|
85 x_path = zeros(N, params.ALPSiters);
|
ivan@154
|
86
|
ivan@154
|
87 %% CG params
|
ivan@154
|
88 if (params.solveNewtonx == 1 || params.solveNewtonb == 1)
|
ivan@154
|
89 cg_verbose = 0;
|
ivan@154
|
90 cg_A = Phi_t*Phi;
|
ivan@154
|
91 cg_b = Phi_t*y;
|
ivan@154
|
92 end;
|
ivan@154
|
93
|
ivan@154
|
94 %% Determine momentum step size selection strategy
|
ivan@154
|
95 fista = 0;
|
ivan@154
|
96 optimizeTau = 0;
|
ivan@154
|
97 a_prev = 1;
|
ivan@154
|
98 function_tau = 0;
|
ivan@154
|
99
|
ivan@154
|
100 if (isa(params.tau,'float'))
|
ivan@154
|
101 function_tau = 0;
|
ivan@154
|
102 if (params.tau == 0)
|
ivan@154
|
103 fista = 1;
|
ivan@154
|
104 optimizeTau = 0;
|
ivan@154
|
105 elseif (params.tau == -1)
|
ivan@154
|
106 optimizeTau = 1;
|
ivan@154
|
107 fista = 0;
|
ivan@154
|
108 end;
|
ivan@154
|
109 elseif (isa(params.tau, 'function_handle'))
|
ivan@154
|
110 function_tau = 1;
|
ivan@154
|
111 end;
|
ivan@154
|
112
|
ivan@154
|
113 %% Determine step size selection strategy
|
ivan@154
|
114 function_mu = 0;
|
ivan@154
|
115 adaptive_mu = 0;
|
ivan@154
|
116
|
ivan@154
|
117 if (isa(params.mu,'float'))
|
ivan@154
|
118 function_mu = 0;
|
ivan@154
|
119 if (params.mu == 0)
|
ivan@154
|
120 adaptive_mu = 1;
|
ivan@154
|
121 else
|
ivan@154
|
122 adaptive_mu = 0;
|
ivan@154
|
123 end;
|
ivan@154
|
124 elseif (isa(params.mu,'function_handle'))
|
ivan@154
|
125 function_mu = 1;
|
ivan@154
|
126 end;
|
ivan@154
|
127
|
ivan@154
|
128 %% Help variables
|
ivan@154
|
129 complementary_Yi = ones(N,1);
|
ivan@154
|
130
|
ivan@154
|
131 i = 1;
|
ivan@154
|
132 %% 1-ALPS(#)
|
ivan@154
|
133 while (i <= params.ALPSiters)
|
ivan@154
|
134 x_path(:,i) = x_cur;
|
ivan@154
|
135 x_prev = x_cur;
|
ivan@154
|
136
|
ivan@154
|
137 % Compute the residual
|
ivan@154
|
138 if (i == 1)
|
ivan@154
|
139 res = y;
|
ivan@154
|
140 % Compute the derivative
|
ivan@154
|
141 der = Phi_t*res;
|
ivan@154
|
142 else
|
ivan@154
|
143 % Compute the derivative
|
ivan@154
|
144 if (optimizeTau)
|
ivan@154
|
145 res = y - Phi_x_cur - params.tau*Phi_diff;
|
ivan@154
|
146 else
|
ivan@154
|
147 res = y - Phi(:,Y_i)*y_cur(Y_i);
|
ivan@154
|
148 end;
|
ivan@154
|
149 der = Phi_t*res;
|
ivan@154
|
150 end;
|
ivan@154
|
151
|
ivan@154
|
152 Phi_x_prev = Phi_x_cur;
|
ivan@154
|
153
|
ivan@154
|
154 % Determine S_i set via eq. (11) (change of variable from x_i to y_i)
|
ivan@154
|
155 complementary_Yi(Y_i) = 0;
|
ivan@154
|
156 [tmpArg, ind_der] = sort(abs(der).*complementary_Yi, 'descend');
|
ivan@154
|
157 complementary_Yi(Y_i) = 1;
|
ivan@154
|
158 S_i = [Y_i; ind_der(1:K)];
|
ivan@154
|
159
|
ivan@154
|
160 ider = der(S_i);
|
ivan@154
|
161 if (params.solveNewtonb == 1)
|
ivan@154
|
162 % Compute least squares solution of the system A*y = (A*A)x using CG
|
ivan@154
|
163 if (params.useCG == 1)
|
ivan@154
|
164 [b, tmpArg, tmpArg] = cgsolve(cg_A(S_i, S_i), cg_b(S_i), params.cg_tol, params.cg_maxiter, cg_verbose);
|
ivan@154
|
165 else
|
ivan@154
|
166 b = cg_A(S_i,S_i)\cg_b(S_i);
|
ivan@154
|
167 end;
|
ivan@154
|
168 else
|
ivan@154
|
169 % Step size selection via eq. (12) and eq. (13) (change of variable from x_i to y_i)
|
ivan@154
|
170 if (adaptive_mu)
|
ivan@154
|
171 Pder = Phi(:,S_i)*ider;
|
ivan@154
|
172 mu_bar = ider'*ider/(Pder'*Pder);
|
ivan@154
|
173 b = y_cur(S_i) + (mu_bar)*ider;
|
ivan@154
|
174 elseif (function_mu)
|
ivan@154
|
175 b = y_cur(S_i) + params.mu(i)*ider;
|
ivan@154
|
176 else b = y_cur(S_i) + params.mu*ider;
|
ivan@154
|
177 end;
|
ivan@154
|
178 end;
|
ivan@154
|
179
|
ivan@154
|
180 % Hard-threshold b and compute X_{i+1}
|
ivan@154
|
181 [tmpArg, ind_b] = sort(abs(b), 'descend');
|
ivan@154
|
182 x_cur = zeros(N,1);
|
ivan@154
|
183 x_cur(S_i(ind_b(1:K))) = b(ind_b(1:K));
|
ivan@154
|
184 X_i = S_i(ind_b(1:K));
|
ivan@154
|
185
|
ivan@154
|
186 if (params.gradientDescentx == 1)
|
ivan@154
|
187 % Calculate gradient of estimated vector x_cur
|
ivan@154
|
188 Phi_x_cur = Phi(:,X_i)*x_cur(X_i);
|
ivan@154
|
189 res = y - Phi_x_cur;
|
ivan@154
|
190 der = Phi_t*res;
|
ivan@154
|
191 ider = der(X_i);
|
ivan@154
|
192
|
ivan@154
|
193 if (adaptive_mu)
|
ivan@154
|
194 Pder = Phi(:,X_i)*ider;
|
ivan@154
|
195 mu_bar = ider'*ider/(Pder'*Pder);
|
ivan@154
|
196 x_cur(X_i) = x_cur(X_i) + mu_bar*ider;
|
ivan@154
|
197 elseif (function_mu)
|
ivan@154
|
198 x_cur(X_i) = x_cur(X_i) + params.mu(i)*ider;
|
ivan@154
|
199 else x_cur(X_i) = x_cur(X_i) + params.mu*ider;
|
ivan@154
|
200 end;
|
ivan@154
|
201 elseif (params.solveNewtonx == 1)
|
ivan@154
|
202 % Similar to HTP
|
ivan@154
|
203 if (params.useCG == 1)
|
ivan@154
|
204 [v, tmpArg, tmpArg] = cgsolve(cg_A(X_i, X_i), cg_b(X_i), params.cg_tol, params.cg_maxiter, cg_verbose);
|
ivan@154
|
205 else
|
ivan@154
|
206 v = cg_A(X_i, X_i)\cg_b(X_i);
|
ivan@154
|
207 end;
|
ivan@154
|
208 x_cur(X_i) = v;
|
ivan@154
|
209 end;
|
ivan@154
|
210
|
ivan@154
|
211 if (~function_tau) % If tau is not a function handle...
|
ivan@154
|
212 if (fista) % Fista configuration
|
ivan@154
|
213 a_cur = (1 + sqrt(1 + 4*a_prev^2))/2;
|
ivan@154
|
214 params.tau = (a_prev - 1)/a_cur;
|
ivan@154
|
215 a_prev = a_cur;
|
ivan@154
|
216 elseif (optimizeTau) % Compute optimized tau
|
ivan@154
|
217
|
ivan@154
|
218 % tau = argmin ||u - Phi*y_{i+1}||
|
ivan@154
|
219 % = <res, Phi*(x_cur - x_prev)>/||Phi*(x_cur - x_prev)||^2
|
ivan@154
|
220
|
ivan@154
|
221 Phi_x_cur = Phi(:,X_i)*x_cur(X_i);
|
ivan@154
|
222 res = y - Phi_x_cur;
|
ivan@154
|
223 if (i == 1)
|
ivan@154
|
224 Phi_diff = Phi_x_cur;
|
ivan@154
|
225 else
|
ivan@154
|
226 Phi_diff = Phi_x_cur - Phi_x_prev;
|
ivan@154
|
227 end;
|
ivan@154
|
228 params.tau = res'*Phi_diff/(Phi_diff'*Phi_diff);
|
ivan@154
|
229 end;
|
ivan@154
|
230
|
ivan@154
|
231 y_cur = x_cur + params.tau*(x_cur - x_prev);
|
ivan@154
|
232 Y_i = find(ne(y_cur, 0));
|
ivan@154
|
233 else
|
ivan@154
|
234 y_cur = x_cur + params.tau(i)*(x_cur - x_prev);
|
ivan@154
|
235 Y_i = find(ne(y_cur, 0));
|
ivan@154
|
236 end;
|
ivan@154
|
237
|
ivan@154
|
238 % Test stopping criterion
|
ivan@154
|
239 if (i > 1) && (norm(x_cur - x_prev) < params.tol*norm(x_cur))
|
ivan@154
|
240 break;
|
ivan@154
|
241 end;
|
ivan@154
|
242 i = i + 1;
|
ivan@154
|
243 end;
|
ivan@154
|
244
|
ivan@154
|
245 x_hat = x_cur;
|
ivan@154
|
246 numiter= i;
|
ivan@154
|
247
|
ivan@154
|
248 if (i > params.ALPSiters)
|
ivan@154
|
249 x_path = x_path(:,1:numiter-1);
|
ivan@154
|
250 else
|
ivan@154
|
251 x_path = x_path(:,1:numiter);
|
ivan@154
|
252 end;
|