idamnjanovic@6
|
1 %% DICTIONARY LEARNING FOR IMAGE DENOISING
|
idamnjanovic@6
|
2 % This file contains an example of how SMALLbox can be used to test different
|
idamnjanovic@6
|
3 % dictionary learning techniques in Image Denoising problem.
|
idamnjanovic@6
|
4 % It calls generateImageDenoiseProblem that will let you to choose image,
|
idamnjanovic@6
|
5 % add noise and use noisy image to generate training set for dictionary
|
idamnjanovic@6
|
6 % learning.
|
idamnjanovic@6
|
7 % Three dictionary learning techniques were compared:
|
idamnjanovic@6
|
8 % - KSVD - M. Elad, R. Rubinstein, and M. Zibulevsky, "Efficient
|
idamnjanovic@6
|
9 % Implementation of the K-SVD Algorithm using Batch Orthogonal
|
idamnjanovic@6
|
10 % Matching Pursuit", Technical Report - CS, Technion, April 2008.
|
idamnjanovic@6
|
11 % - KSVDS - R. Rubinstein, M. Zibulevsky, and M. Elad, "Learning Sparse
|
idamnjanovic@6
|
12 % Dictionaries for Sparse Signal Approximation", Technical
|
idamnjanovic@6
|
13 % Report - CS, Technion, June 2009.
|
idamnjanovic@6
|
14 % - SPAMS - J. Mairal, F. Bach, J. Ponce and G. Sapiro. Online
|
idamnjanovic@6
|
15 % Dictionary Learning for Sparse Coding. International
|
idamnjanovic@6
|
16 % Conference on Machine Learning,Montreal, Canada, 2009
|
idamnjanovic@6
|
17 %
|
idamnjanovic@6
|
18 %
|
idamnjanovic@6
|
19 % Ivan Damnjanovic 2010
|
idamnjanovic@6
|
20 %%
|
idamnjanovic@6
|
21
|
idamnjanovic@6
|
22 clear;
|
idamnjanovic@6
|
23
|
idamnjanovic@6
|
24 % If you want to load the image outside of generateImageDenoiseProblem
|
idamnjanovic@6
|
25 % function uncomment following lines. This can be useful if you want to
|
idamnjanovic@6
|
26 % denoise more then one image for example.
|
idamnjanovic@6
|
27
|
idamnjanovic@6
|
28 % TMPpath=pwd;
|
idamnjanovic@6
|
29 % FS=filesep;
|
idamnjanovic@6
|
30 % [pathstr1, name, ext, versn] = fileparts(which('SMALLboxSetup.m'));
|
idamnjanovic@6
|
31 % cd([pathstr1,FS,'data',FS,'images']);
|
idamnjanovic@6
|
32 % [filename,pathname] = uigetfile({'*.png;'},'Select a file containin pre-calculated notes');
|
idamnjanovic@6
|
33 % [pathstr, name, ext, versn] = fileparts(filename);
|
idamnjanovic@6
|
34 % test_image = imread(filename);
|
idamnjanovic@6
|
35 % test_image = double(test_image);
|
idamnjanovic@6
|
36 % cd(TMPpath);
|
idamnjanovic@6
|
37 % SMALL.Problem.name=name;
|
idamnjanovic@6
|
38
|
idamnjanovic@6
|
39
|
idamnjanovic@6
|
40 % Defining Image Denoising Problem as Dictionary Learning
|
idamnjanovic@6
|
41 % Problem. As an input we set the number of training patches.
|
idamnjanovic@6
|
42
|
idamnjanovic@6
|
43 SMALL.Problem = generateImageDenoiseProblem('', 40000);
|
idamnjanovic@6
|
44
|
idamnjanovic@6
|
45
|
idamnjanovic@6
|
46 %%
|
idamnjanovic@6
|
47 % Use KSVD Dictionary Learning Algorithm to Learn overcomplete dictionary
|
idamnjanovic@6
|
48
|
idamnjanovic@6
|
49 % Initialising Dictionary structure
|
idamnjanovic@6
|
50 % Setting Dictionary structure fields (toolbox, name, param, D and time)
|
idamnjanovic@6
|
51 % to zero values
|
idamnjanovic@6
|
52
|
idamnjanovic@6
|
53 SMALL.DL(1)=SMALL_init_DL();
|
idamnjanovic@6
|
54
|
idamnjanovic@6
|
55 % Defining the parameters needed for dictionary learning
|
idamnjanovic@6
|
56
|
idamnjanovic@6
|
57 SMALL.DL(1).toolbox = 'KSVD';
|
idamnjanovic@6
|
58 SMALL.DL(1).name = 'ksvd';
|
idamnjanovic@6
|
59
|
idamnjanovic@6
|
60 % Defining the parameters for KSVD
|
idamnjanovic@6
|
61 % In this example we are learning 256 atoms in 20 iterations, so that
|
idamnjanovic@6
|
62 % every patch in the training set can be represented with target error in
|
idamnjanovic@6
|
63 % L2-norm (EData)
|
idamnjanovic@6
|
64 % Type help ksvd in MATLAB prompt for more options.
|
idamnjanovic@6
|
65
|
idamnjanovic@6
|
66 Edata=sqrt(prod(SMALL.Problem.blocksize)) * SMALL.Problem.sigma * SMALL.Problem.gain;
|
idamnjanovic@6
|
67 SMALL.DL(1).param=struct(...
|
idamnjanovic@6
|
68 'Edata', Edata,...
|
idamnjanovic@6
|
69 'initdict', SMALL.Problem.initdict,...
|
idamnjanovic@6
|
70 'dictsize', SMALL.Problem.p,...
|
idamnjanovic@6
|
71 'iternum', 20,...
|
idamnjanovic@6
|
72 'memusage', 'high');
|
idamnjanovic@6
|
73
|
idamnjanovic@6
|
74 % Learn the dictionary
|
idamnjanovic@6
|
75
|
idamnjanovic@6
|
76 SMALL.DL(1) = SMALL_learn(SMALL.Problem, SMALL.DL(1));
|
idamnjanovic@6
|
77
|
idamnjanovic@6
|
78 % Set SMALL.Problem.A dictionary
|
idamnjanovic@6
|
79 % (backward compatiblity with SPARCO: solver structure communicate
|
idamnjanovic@6
|
80 % only with Problem structure, ie no direct communication between DL and
|
idamnjanovic@6
|
81 % solver structures)
|
idamnjanovic@6
|
82
|
idamnjanovic@6
|
83 SMALL.Problem.A = SMALL.DL(1).D;
|
idamnjanovic@6
|
84
|
idamnjanovic@6
|
85
|
idamnjanovic@6
|
86 %%
|
idamnjanovic@6
|
87 % Initialising solver structure
|
idamnjanovic@6
|
88 % Setting solver structure fields (toolbox, name, param, solution,
|
idamnjanovic@6
|
89 % reconstructed and time) to zero values
|
idamnjanovic@6
|
90
|
idamnjanovic@6
|
91 SMALL.solver(1)=SMALL_init_solver;
|
idamnjanovic@6
|
92
|
idamnjanovic@6
|
93 % Defining the parameters needed for image denoising
|
idamnjanovic@6
|
94
|
idamnjanovic@6
|
95 SMALL.solver(1).toolbox='ompbox';
|
idamnjanovic@6
|
96 SMALL.solver(1).name='ompdenoise';
|
idamnjanovic@6
|
97
|
idamnjanovic@6
|
98 % Denoising the image - SMALL_denoise function is similar to SMALL_solve,
|
idamnjanovic@6
|
99 % but backward compatible with KSVD definition of denoising
|
idamnjanovic@6
|
100
|
idamnjanovic@6
|
101 SMALL.solver(1)=SMALL_denoise(SMALL.Problem, SMALL.solver(1));
|
idamnjanovic@6
|
102
|
idamnjanovic@6
|
103 %%
|
idamnjanovic@6
|
104 % Use KSVDS Dictionary Learning Algorithm to denoise image
|
idamnjanovic@6
|
105
|
idamnjanovic@6
|
106 % Initialising solver structure
|
idamnjanovic@6
|
107 % Setting solver structure fields (toolbox, name, param, solution,
|
idamnjanovic@6
|
108 % reconstructed and time) to zero values
|
idamnjanovic@6
|
109
|
idamnjanovic@6
|
110 SMALL.DL(2)=SMALL_init_DL();
|
idamnjanovic@6
|
111
|
idamnjanovic@6
|
112 % Defining the parameters needed for dictionary learning
|
idamnjanovic@6
|
113
|
idamnjanovic@6
|
114 SMALL.DL(2).toolbox = 'KSVDS';
|
idamnjanovic@6
|
115 SMALL.DL(2).name = 'ksvds';
|
idamnjanovic@6
|
116
|
idamnjanovic@6
|
117 % Defining the parameters for KSVDS
|
idamnjanovic@6
|
118 % In this example we are learning 256 atoms in 20 iterations, so that
|
idamnjanovic@6
|
119 % every patch in the training set can be represented with target error in
|
idamnjanovic@6
|
120 % L2-norm (EDataS). We also impose "double sparsity" - dictionary itself
|
idamnjanovic@6
|
121 % has to be sparse in the given base dictionary (Tdict - number of
|
idamnjanovic@6
|
122 % nonzero elements per atom).
|
idamnjanovic@6
|
123 % Type help ksvds in MATLAB prompt for more options.
|
idamnjanovic@6
|
124
|
idamnjanovic@6
|
125 EdataS=sqrt(prod(SMALL.Problem.blocksize)) * SMALL.Problem.sigma * SMALL.Problem.gain;
|
idamnjanovic@6
|
126 SMALL.DL(2).param=struct(...
|
idamnjanovic@6
|
127 'Edata', EdataS, ...
|
idamnjanovic@6
|
128 'Tdict', 6,...
|
idamnjanovic@6
|
129 'stepsize', 1,...
|
idamnjanovic@6
|
130 'dictsize', SMALL.Problem.p,...
|
idamnjanovic@6
|
131 'iternum', 20,...
|
idamnjanovic@6
|
132 'memusage', 'high');
|
idamnjanovic@6
|
133 SMALL.DL(2).param.initA = speye(SMALL.Problem.p);
|
idamnjanovic@6
|
134 SMALL.DL(2).param.basedict{1} = odctdict(8,16);
|
idamnjanovic@6
|
135 SMALL.DL(2).param.basedict{2} = odctdict(8,16);
|
idamnjanovic@6
|
136
|
idamnjanovic@6
|
137 % Learn the dictionary
|
idamnjanovic@6
|
138
|
idamnjanovic@6
|
139 SMALL.DL(2) = SMALL_learn(SMALL.Problem, SMALL.DL(2));
|
idamnjanovic@6
|
140
|
idamnjanovic@6
|
141 % Set SMALL.Problem.A dictionary and SMALL.Problem.basedictionary
|
idamnjanovic@6
|
142 % (backward compatiblity with SPARCO: solver structure communicate
|
idamnjanovic@6
|
143 % only with Problem structure, ie no direct communication between DL and
|
idamnjanovic@6
|
144 % solver structures)
|
idamnjanovic@6
|
145
|
idamnjanovic@6
|
146 SMALL.Problem.A = SMALL.DL(2).D;
|
idamnjanovic@6
|
147 SMALL.Problem.basedict{1} = SMALL.DL(2).param.basedict{1};
|
idamnjanovic@6
|
148 SMALL.Problem.basedict{2} = SMALL.DL(2).param.basedict{2};
|
idamnjanovic@6
|
149
|
idamnjanovic@6
|
150 %%
|
idamnjanovic@6
|
151 % Initialising solver structure
|
idamnjanovic@6
|
152 % Setting solver structure fields (toolbox, name, param, solution,
|
idamnjanovic@6
|
153 % reconstructed and time) to zero values
|
idamnjanovic@6
|
154
|
idamnjanovic@6
|
155 SMALL.solver(2)=SMALL_init_solver;
|
idamnjanovic@6
|
156
|
idamnjanovic@6
|
157 % Defining the parameters needed for image denoising
|
idamnjanovic@6
|
158
|
idamnjanovic@6
|
159 SMALL.solver(2).toolbox='ompsbox';
|
idamnjanovic@6
|
160 SMALL.solver(2).name='ompsdenoise';
|
idamnjanovic@6
|
161
|
idamnjanovic@6
|
162 % Denoising the image - SMALL_denoise function is similar to SMALL_solve,
|
idamnjanovic@6
|
163 % but backward compatible with KSVD definition of denoising
|
idamnjanovic@6
|
164 % Pay attention that since implicit base dictionary is used, denoising
|
idamnjanovic@6
|
165 % can be much faster then using explicit dictionary in KSVD example.
|
idamnjanovic@6
|
166
|
idamnjanovic@6
|
167 SMALL.solver(2)=SMALL_denoise(SMALL.Problem, SMALL.solver(2));
|
idamnjanovic@6
|
168
|
idamnjanovic@13
|
169 % %%
|
idamnjanovic@13
|
170 % % Use SPAMS Online Dictionary Learning Algorithm
|
idamnjanovic@13
|
171 % % to Learn overcomplete dictionary (Julien Mairal 2009)
|
idamnjanovic@13
|
172 % % (If you have not installed SPAMS please comment the following two cells)
|
idamnjanovic@13
|
173 %
|
idamnjanovic@13
|
174 % % Initialising Dictionary structure
|
idamnjanovic@13
|
175 % % Setting Dictionary structure fields (toolbox, name, param, D and time)
|
idamnjanovic@13
|
176 % % to zero values
|
idamnjanovic@13
|
177 %
|
idamnjanovic@13
|
178 % SMALL.DL(3)=SMALL_init_DL();
|
idamnjanovic@13
|
179 %
|
idamnjanovic@13
|
180 % % Defining fields needed for dictionary learning
|
idamnjanovic@13
|
181 %
|
idamnjanovic@13
|
182 % SMALL.DL(3).toolbox = 'SPAMS';
|
idamnjanovic@13
|
183 % SMALL.DL(3).name = 'mexTrainDL';
|
idamnjanovic@13
|
184 %
|
idamnjanovic@13
|
185 % % Type 'help mexTrainDL in MATLAB prompt for explanation of parameters.
|
idamnjanovic@13
|
186 %
|
idamnjanovic@13
|
187 % SMALL.DL(3).param=struct(...
|
idamnjanovic@13
|
188 % 'D', SMALL.Problem.initdict,...
|
idamnjanovic@13
|
189 % 'K', SMALL.Problem.p,...
|
idamnjanovic@13
|
190 % 'lambda', 2,...
|
idamnjanovic@13
|
191 % 'iter', 200,...
|
idamnjanovic@13
|
192 % 'mode', 3, ...
|
idamnjanovic@13
|
193 % 'modeD', 0);
|
idamnjanovic@13
|
194 %
|
idamnjanovic@13
|
195 % % Learn the dictionary
|
idamnjanovic@13
|
196 %
|
idamnjanovic@13
|
197 % SMALL.DL(3) = SMALL_learn(SMALL.Problem, SMALL.DL(3));
|
idamnjanovic@13
|
198 %
|
idamnjanovic@13
|
199 % % Set SMALL.Problem.A dictionary
|
idamnjanovic@13
|
200 % % (backward compatiblity with SPARCO: solver structure communicate
|
idamnjanovic@13
|
201 % % only with Problem structure, ie no direct communication between DL and
|
idamnjanovic@13
|
202 % % solver structures)
|
idamnjanovic@13
|
203 %
|
idamnjanovic@13
|
204 % SMALL.Problem.A = SMALL.DL(3).D;
|
idamnjanovic@13
|
205 %
|
idamnjanovic@13
|
206 %
|
idamnjanovic@13
|
207 % %%
|
idamnjanovic@13
|
208 % % Initialising solver structure
|
idamnjanovic@13
|
209 % % Setting solver structure fields (toolbox, name, param, solution,
|
idamnjanovic@13
|
210 % % reconstructed and time) to zero values
|
idamnjanovic@13
|
211 %
|
idamnjanovic@13
|
212 % SMALL.solver(3)=SMALL_init_solver;
|
idamnjanovic@13
|
213 %
|
idamnjanovic@13
|
214 % % Defining the parameters needed for denoising
|
idamnjanovic@13
|
215 %
|
idamnjanovic@13
|
216 % SMALL.solver(3).toolbox='ompbox';
|
idamnjanovic@13
|
217 % SMALL.solver(3).name='ompdenoise';
|
idamnjanovic@13
|
218 %
|
idamnjanovic@13
|
219 % % Denoising the image - SMALL_denoise function is similar to SMALL_solve,
|
idamnjanovic@13
|
220 % % but backward compatible with KSVD definition of denoising
|
idamnjanovic@13
|
221 %
|
idamnjanovic@13
|
222 % SMALL.solver(3)=SMALL_denoise(SMALL.Problem, SMALL.solver(3));
|
idamnjanovic@6
|
223
|
idamnjanovic@6
|
224 %%
|
idamnjanovic@6
|
225 % Plot results and save midi files
|
idamnjanovic@6
|
226
|
idamnjanovic@6
|
227 % show results %
|
idamnjanovic@6
|
228
|
idamnjanovic@6
|
229 SMALL_ImgDeNoiseResult(SMALL);
|