annotate util/classes/dictionaryMatrices/shrinkgram.m @ 193:cc540df790f4 danieleb

Simple example that demonstrated dictionary learning... to be completed
author Daniele Barchiesi <daniele.barchiesi@eecs.qmul.ac.uk>
date Fri, 09 Mar 2012 15:12:01 +0000
parents e8428989412f
children
rev   line source
daniele@171 1 function [dic mus] = shrinkgram(dic,mu,dd1,dd2,params)
daniele@171 2 % grassmanian attempts to create an n by m matrix with minimal mutual
daniele@171 3 % coherence using an iterative projection method.
daniele@171 4 %
daniele@171 5 % [A G res] = grassmanian(n,m,nIter,dd1,dd2,initA)
daniele@171 6 %
daniele@171 7 % REFERENCE
daniele@171 8 % M. Elad, Sparse and Redundant Representations, Springer 2010.
daniele@171 9
daniele@171 10 %% Parameters and Defaults
daniele@171 11 if ~nargin, testshrinkgram; return; end
daniele@171 12
daniele@171 13 if ~exist('dd2','var') || isempty(dd2), dd2 = 0.9; end %shrinking factor
daniele@171 14 if ~exist('dd1','var') || isempty(dd1), dd1 = 0.9; end %percentage of coherences to be shrinked
daniele@171 15 if ~exist('params','var') || isempty(params), params = struct; end
daniele@171 16 if ~isfield(params,'nIter'), params.nIter = 100; end
daniele@171 17
daniele@171 18 %% Main algo
daniele@171 19 dic = normc(dic); %normalise columns
daniele@171 20 G = dic'*dic; %gram matrix
daniele@171 21 [n m] = size(dic);
daniele@171 22
daniele@171 23 MU = @(G) max(max(abs(G-diag(diag(G))))); %coherence function
daniele@171 24
daniele@171 25 mus = ones(params.nIter,1);
daniele@171 26 iIter = 1;
daniele@171 27 % optimise gram matrix
daniele@171 28 while iIter<=params.nIter && MU(G)>mu
daniele@171 29 mus(iIter) = MU(G); %calculate coherence
daniele@171 30 gg = sort(abs(G(:))); %sort inner products from less to most correlated
daniele@171 31 pos = find(abs(G(:))>=gg(round(dd1*(m^2-m))) & abs(G(:)-1)>1e-6); %find large elements of gram matrix
daniele@171 32 G(pos) = G(pos)*dd2; %shrink large elements of gram matrix
daniele@171 33 [U S V] = svd(G); %compute new SVD of gram matrix
daniele@171 34 S(n+1:end,1+n:end) = 0; %set small eigenvalues to zero (this ensures rank(G)<=d)
daniele@171 35 G = U*S*V'; %update gram matrix
daniele@171 36 G = diag(1./abs(sqrt(diag(G))))*G*diag(1./abs(sqrt(diag(G)))); %normalise gram matrix diagonal
daniele@171 37 iIter = iIter+1;
daniele@171 38 end
daniele@171 39 %if iIter<params.nIter
daniele@171 40 % mus(iIter:end) = mus(iIter-1);
daniele@171 41 %end
daniele@171 42
daniele@171 43 [V_gram Sigma_gram] = svd(G); %calculate svd decomposition of gramian
daniele@171 44 dic = sqrt(Sigma_gram(1:n,:))*V_gram'; %update dictionary
daniele@171 45
daniele@171 46 function testshrinkgram
daniele@171 47 clc
daniele@171 48 %define parameters
daniele@171 49 n = 256; %ambient dimension
daniele@171 50 m = 512; %number of atoms
daniele@171 51 N = 1024; %number of signals
daniele@171 52 mu_min = sqrt((m-n)/(n*(m-1))); %minimum coherence
daniele@171 53
daniele@171 54 %initialise data
daniele@171 55 phi = normc(randn(n,m)); %dictionary
daniele@171 56
daniele@171 57 %optimise dictionary
daniele@171 58 [~, mus] = shrinkgram(phi,0.2);
daniele@171 59
daniele@171 60 %plot results
daniele@171 61 nIter = length(mus);
daniele@171 62
daniele@171 63 figure, hold on
daniele@171 64 plot(1:nIter,mus,'ko-');
daniele@171 65 plot([1 nIter],[mu_min mu_min],'k')
daniele@171 66 grid on
daniele@171 67 legend('\mu','\mu_{min}');