idamnjanovic@10
|
1 function data=generateImageDenoiseProblem(im, trainnum, blocksize, dictsize, sigma, gain, maxval, initdict);
|
idamnjanovic@10
|
2 %%% Generate Image Denoising Problem
|
idamnjanovic@10
|
3 % Ivan Damnjanovic 2010
|
idamnjanovic@10
|
4 %
|
idamnjanovic@10
|
5 % generateImageDenoiseProblem is a part of the SMALLbox and generates
|
idamnjanovic@10
|
6 % a problem that can be used for comparison of Dictionary Learning/Sparse
|
idamnjanovic@10
|
7 % Representation techniques in image denoising scenario.
|
idamnjanovic@10
|
8 % The function takes as an input:
|
idamnjanovic@10
|
9 % - im - image matrix (if not present function promts user for an
|
idamnjanovic@10
|
10 % image file) ,
|
idamnjanovic@10
|
11 % - trainnum - number of training samples (default - 40000)
|
idamnjanovic@10
|
12 % - blocksize - block (patch) vertical/horizontal dimension (default 8),
|
idamnjanovic@10
|
13 % - dictsize - dictionary size (default - 256),
|
idamnjanovic@10
|
14 % - sigma - noise level (default - 20),
|
idamnjanovic@10
|
15 % - noise gain (default - 1.15),
|
idamnjanovic@10
|
16 % - maxval - maximum value (default - 255)
|
idamnjanovic@10
|
17 % - initdict - initial dictionary (default - 4x overcomlete dct)
|
idamnjanovic@10
|
18 %
|
idamnjanovic@10
|
19 % The output of the function is stucture with following fields:
|
idamnjanovic@10
|
20 % - name - name of the original image (if image is read inside of the
|
idamnjanovic@10
|
21 % function)
|
idamnjanovic@10
|
22 % - Original - original image matrix,
|
idamnjanovic@10
|
23 % - Noisy - image with added noise,
|
idamnjanovic@10
|
24 % - b - training patches,
|
idamnjanovic@10
|
25 % - m - size of training patches (default 64),
|
idamnjanovic@10
|
26 % - n - number of training patches,
|
idamnjanovic@10
|
27 % - p - number of dictionary elements to be learned,
|
idamnjanovic@10
|
28 % - blocksize - block size (default [8 8]),
|
idamnjanovic@10
|
29 % - sigma - noise level,
|
idamnjanovic@10
|
30 % - noise gain (default - 1.15),
|
idamnjanovic@10
|
31 % - maxval - maximum value (default - 255)
|
idamnjanovic@10
|
32 % - initdict - initial dictionary (default - 4x overcomlete dct)
|
idamnjanovic@10
|
33 % - signalDim - signal dimension (default - 2)
|
idamnjanovic@10
|
34 %
|
idamnjanovic@10
|
35 % Based on KSVD denoise demo by Ron Rubinstein
|
idamnjanovic@10
|
36 % See also KSVDDENOISEDEMO and KSVDDEMO.
|
idamnjanovic@10
|
37 % Ron Rubinstein
|
idamnjanovic@10
|
38 % Computer Science Department
|
idamnjanovic@10
|
39 % Technion, Haifa 32000 Israel
|
idamnjanovic@10
|
40 % ronrubin@cs
|
idamnjanovic@10
|
41 % August 2009
|
idamnjanovic@10
|
42 %%
|
idamnjanovic@10
|
43 disp(' ');
|
idamnjanovic@10
|
44 disp(' ********** Denoising Problem **********');
|
idamnjanovic@10
|
45 disp(' ');
|
idamnjanovic@10
|
46 disp(' This function reads an image, adds random Gaussian noise,');
|
idamnjanovic@10
|
47 disp(' that can be later denoised by using dictionary learning techniques.');
|
idamnjanovic@10
|
48 disp(' ');
|
idamnjanovic@10
|
49
|
idamnjanovic@10
|
50
|
idamnjanovic@10
|
51 %% prompt user for image %%
|
idamnjanovic@10
|
52 %ask for file name
|
idamnjanovic@10
|
53 FS=filesep;
|
idamnjanovic@10
|
54 TMPpath=pwd;
|
idamnjanovic@10
|
55 if ~ exist( 'im', 'var' ) || isempty(im)
|
idamnjanovic@10
|
56 [pathstr1, name, ext, versn] = fileparts(which('SMALLboxSetup.m'));
|
idamnjanovic@10
|
57 cd([pathstr1,FS,'data',FS,'images']);
|
idamnjanovic@17
|
58 [filename,pathname] = uigetfile({'*.png;'},'Select an image');
|
idamnjanovic@10
|
59 [pathstr, name, ext, versn] = fileparts(filename);
|
idamnjanovic@10
|
60 data.name=name;
|
idamnjanovic@10
|
61 im = imread(filename);
|
idamnjanovic@10
|
62 im = double(im);
|
idamnjanovic@10
|
63 end;
|
idamnjanovic@10
|
64 cd(TMPpath);
|
idamnjanovic@10
|
65
|
idamnjanovic@10
|
66 %% check input parameters %%
|
idamnjanovic@10
|
67
|
idamnjanovic@10
|
68 if ~ exist( 'blocksize', 'var' ) || isempty(blocksize),blocksize = 8;end
|
idamnjanovic@10
|
69 if ~ exist( 'dictsize', 'var' ) || isempty(dictsize), dictsize = 256;end
|
idamnjanovic@10
|
70 if ~ exist( 'trainnum', 'var' ) || isempty(trainnum),trainnum = 40000;end
|
idamnjanovic@10
|
71 if ~ exist( 'sigma', 'var' ) || isempty(sigma), sigma = 20; end
|
idamnjanovic@10
|
72 if ~ exist( 'gain', 'var' ) || isempty(gain), gain = 1.15; end
|
idamnjanovic@10
|
73 if ~ exist( 'maxval', 'var' ) || isempty(maxval), maxval = 255; end
|
idamnjanovic@10
|
74 if ~ exist( 'initdict', 'var' ) || isempty(initdict), initdict = 'odct'; end
|
idamnjanovic@10
|
75
|
idamnjanovic@10
|
76 %% generate noisy image %%
|
idamnjanovic@10
|
77
|
idamnjanovic@10
|
78 disp(' ');
|
idamnjanovic@10
|
79 disp('Generating noisy image...');
|
idamnjanovic@10
|
80
|
idamnjanovic@10
|
81 n = randn(size(im)) * sigma;
|
idamnjanovic@10
|
82 imnoise = im + n;
|
idamnjanovic@10
|
83
|
idamnjanovic@10
|
84 %% set parameters %%
|
idamnjanovic@10
|
85
|
idamnjanovic@10
|
86 x = imnoise;
|
idamnjanovic@10
|
87 p = ndims(x);
|
idamnjanovic@10
|
88
|
idamnjanovic@10
|
89 if (p==2 && any(size(x)==1) && length(blocksize)==1)
|
idamnjanovic@10
|
90 p = 1;
|
idamnjanovic@10
|
91 end
|
idamnjanovic@10
|
92
|
idamnjanovic@10
|
93 % blocksize %
|
idamnjanovic@10
|
94
|
idamnjanovic@10
|
95 if (numel(blocksize)==1)
|
idamnjanovic@10
|
96 blocksize = ones(1,p)*blocksize;
|
idamnjanovic@10
|
97 end
|
idamnjanovic@10
|
98
|
idamnjanovic@10
|
99 if (strcmpi(initdict,'odct'))
|
idamnjanovic@10
|
100 initdict = odctndict(blocksize,dictsize,p);
|
idamnjanovic@10
|
101 elseif (strcmpi(initdict,'data'))
|
idamnjanovic@10
|
102 clear initdict; % causes initialization using random examples
|
idamnjanovic@10
|
103 else
|
idamnjanovic@10
|
104 error('Invalid initial dictionary specified.');
|
idamnjanovic@10
|
105 end
|
idamnjanovic@10
|
106
|
idamnjanovic@10
|
107 if exist( 'initdict', 'var' )
|
idamnjanovic@10
|
108 initdict = initdict(:,1:dictsize);
|
idamnjanovic@10
|
109 end
|
idamnjanovic@10
|
110
|
idamnjanovic@10
|
111 %%%% create training data %%%
|
idamnjanovic@10
|
112
|
idamnjanovic@10
|
113 ids = cell(p,1);
|
idamnjanovic@10
|
114 if (p==1)
|
idamnjanovic@10
|
115 ids{1} = reggrid(length(x)-blocksize+1, trainnum, 'eqdist');
|
idamnjanovic@10
|
116 else
|
idamnjanovic@10
|
117 [ids{:}] = reggrid(size(x)-blocksize+1, trainnum, 'eqdist');
|
idamnjanovic@10
|
118 end
|
idamnjanovic@10
|
119 X = sampgrid(x,blocksize,ids{:});
|
idamnjanovic@10
|
120
|
idamnjanovic@10
|
121 % remove dc in blocks to conserve memory %
|
idamnjanovic@10
|
122
|
idamnjanovic@10
|
123 bsize = 2000;
|
idamnjanovic@10
|
124 for i = 1:bsize:size(X,2)
|
idamnjanovic@10
|
125 blockids = i : min(i+bsize-1,size(X,2));
|
idamnjanovic@10
|
126 X(:,blockids) = remove_dc(X(:,blockids),'columns');
|
idamnjanovic@10
|
127 end
|
idamnjanovic@10
|
128
|
idamnjanovic@10
|
129 %% output structure %%
|
idamnjanovic@10
|
130
|
idamnjanovic@10
|
131 data.Original = im;
|
idamnjanovic@10
|
132 data.Noisy = imnoise;
|
idamnjanovic@10
|
133 data.b = X;
|
idamnjanovic@10
|
134 data.m = size(X,1);
|
idamnjanovic@10
|
135 data.n = size(X,2);
|
idamnjanovic@10
|
136 data.p = dictsize;
|
idamnjanovic@10
|
137 data.blocksize=blocksize;
|
idamnjanovic@10
|
138 data.sigma = sigma;
|
idamnjanovic@10
|
139 data.gain = gain;
|
idamnjanovic@10
|
140 data.maxval = maxval;
|
idamnjanovic@10
|
141 data.initdict= initdict;
|
idamnjanovic@10
|
142 data.signalDim=2;
|
idamnjanovic@10
|
143
|
idamnjanovic@10
|
144 end %% end of function |