maria@87
|
1 %% DICTIONARY LEARNING FOR IMAGE DENOISING
|
idamnjanovic@42
|
2 % This file contains an example of how SMALLbox can be used to test different
|
idamnjanovic@42
|
3 % dictionary learning techniques in Image Denoising problem.
|
idamnjanovic@42
|
4 % It calls generateImageDenoiseProblem that will let you to choose image,
|
idamnjanovic@42
|
5 % add noise and use noisy image to generate training set for dictionary
|
idamnjanovic@42
|
6 % learning.
|
maria@83
|
7 % Two dictionary learning techniques were compared:
|
idamnjanovic@42
|
8 % - KSVD - M. Elad, R. Rubinstein, and M. Zibulevsky, "Efficient
|
idamnjanovic@42
|
9 % Implementation of the K-SVD Algorithm using Batch Orthogonal
|
idamnjanovic@42
|
10 % Matching Pursuit", Technical Report - CS, Technion, April 2008.
|
maria@83
|
11 % - RLS-DLA - Skretting, K.; Engan, K.; , "Recursive Least Squares
|
maria@83
|
12 % Dictionary Learning Algorithm," Signal Processing, IEEE Transactions on,
|
maria@83
|
13 % vol.58, no.4, pp.2121-2130, April 2010
|
idamnjanovic@42
|
14 %
|
maria@83
|
15
|
maria@83
|
16
|
maria@83
|
17 % Centre for Digital Music, Queen Mary, University of London.
|
maria@83
|
18 % This file copyright 2011 Ivan Damnjanovic.
|
idamnjanovic@42
|
19 %
|
maria@83
|
20 % This program is free software; you can redistribute it and/or
|
maria@83
|
21 % modify it under the terms of the GNU General Public License as
|
maria@83
|
22 % published by the Free Software Foundation; either version 2 of the
|
maria@83
|
23 % License, or (at your option) any later version. See the file
|
maria@83
|
24 % COPYING included with this distribution for more information.
|
maria@83
|
25 %
|
idamnjanovic@42
|
26 %%
|
idamnjanovic@42
|
27
|
idamnjanovic@42
|
28
|
idamnjanovic@42
|
29
|
idamnjanovic@42
|
30 % If you want to load the image outside of generateImageDenoiseProblem
|
idamnjanovic@42
|
31 % function uncomment following lines. This can be useful if you want to
|
idamnjanovic@42
|
32 % denoise more then one image for example.
|
maria@83
|
33 % Here we are loading test_image.mat that contains structure with 5 images : lena,
|
maria@83
|
34 % barbara,boat, house and peppers.
|
idamnjanovic@42
|
35 clear;
|
idamnjanovic@42
|
36 TMPpath=pwd;
|
idamnjanovic@42
|
37 FS=filesep;
|
idamnjanovic@42
|
38 [pathstr1, name, ext, versn] = fileparts(which('SMALLboxSetup.m'));
|
idamnjanovic@42
|
39 cd([pathstr1,FS,'data',FS,'images']);
|
idamnjanovic@42
|
40 load('test_image.mat');
|
ivan@77
|
41 cd(TMPpath);
|
maria@83
|
42
|
maria@83
|
43 % Deffining the noise levels that we want to test
|
idamnjanovic@42
|
44
|
idamnjanovic@42
|
45 noise_level=[10 20 25 50 100];
|
maria@83
|
46
|
maria@83
|
47 % Here we loop through different noise levels and images
|
maria@83
|
48
|
maria@83
|
49 for noise_ind=2:2
|
maria@83
|
50 for im_num=1:1
|
maria@83
|
51
|
idamnjanovic@42
|
52 % Defining Image Denoising Problem as Dictionary Learning
|
idamnjanovic@42
|
53 % Problem. As an input we set the number of training patches.
|
maria@83
|
54
|
idamnjanovic@65
|
55 SMALL.Problem = generateImageDenoiseProblem(test_image(im_num).i, 40000, '',256, noise_level(noise_ind));
|
ivan@77
|
56 SMALL.Problem.name=int2str(im_num);
|
ivan@84
|
57 % results structure is to store all results
|
idamnjanovic@42
|
58
|
idamnjanovic@42
|
59 results(noise_ind,im_num).noisy_psnr=SMALL.Problem.noisy_psnr;
|
idamnjanovic@42
|
60
|
idamnjanovic@42
|
61 %%
|
idamnjanovic@42
|
62 % Use KSVD Dictionary Learning Algorithm to Learn overcomplete dictionary
|
idamnjanovic@42
|
63
|
idamnjanovic@42
|
64 % Initialising Dictionary structure
|
idamnjanovic@42
|
65 % Setting Dictionary structure fields (toolbox, name, param, D and time)
|
idamnjanovic@42
|
66 % to zero values
|
idamnjanovic@42
|
67
|
idamnjanovic@42
|
68 SMALL.DL(1)=SMALL_init_DL();
|
idamnjanovic@42
|
69
|
idamnjanovic@42
|
70 % Defining the parameters needed for dictionary learning
|
idamnjanovic@42
|
71
|
idamnjanovic@42
|
72 SMALL.DL(1).toolbox = 'KSVD';
|
idamnjanovic@42
|
73 SMALL.DL(1).name = 'ksvd';
|
idamnjanovic@42
|
74
|
idamnjanovic@42
|
75 % Defining the parameters for KSVD
|
idamnjanovic@42
|
76 % In this example we are learning 256 atoms in 20 iterations, so that
|
idamnjanovic@42
|
77 % every patch in the training set can be represented with target error in
|
idamnjanovic@42
|
78 % L2-norm (EData)
|
idamnjanovic@42
|
79 % Type help ksvd in MATLAB prompt for more options.
|
idamnjanovic@42
|
80
|
idamnjanovic@42
|
81 Edata=sqrt(prod(SMALL.Problem.blocksize)) * SMALL.Problem.sigma * SMALL.Problem.gain;
|
idamnjanovic@42
|
82 maxatoms = floor(prod(SMALL.Problem.blocksize)/2);
|
idamnjanovic@42
|
83 SMALL.DL(1).param=struct(...
|
idamnjanovic@42
|
84 'Edata', Edata,...
|
idamnjanovic@42
|
85 'initdict', SMALL.Problem.initdict,...
|
idamnjanovic@42
|
86 'dictsize', SMALL.Problem.p,...
|
idamnjanovic@42
|
87 'exact', 1, ...
|
idamnjanovic@42
|
88 'iternum', 20,...
|
idamnjanovic@42
|
89 'memusage', 'high');
|
idamnjanovic@42
|
90
|
idamnjanovic@42
|
91 % Learn the dictionary
|
idamnjanovic@42
|
92
|
idamnjanovic@42
|
93 SMALL.DL(1) = SMALL_learn(SMALL.Problem, SMALL.DL(1));
|
idamnjanovic@42
|
94
|
idamnjanovic@42
|
95 % Set SMALL.Problem.A dictionary
|
idamnjanovic@42
|
96 % (backward compatiblity with SPARCO: solver structure communicate
|
idamnjanovic@42
|
97 % only with Problem structure, ie no direct communication between DL and
|
idamnjanovic@42
|
98 % solver structures)
|
idamnjanovic@42
|
99
|
idamnjanovic@42
|
100 SMALL.Problem.A = SMALL.DL(1).D;
|
idamnjanovic@42
|
101 SMALL.Problem.reconstruct = @(x) ImgDenoise_reconstruct(x, SMALL.Problem);
|
idamnjanovic@42
|
102
|
idamnjanovic@42
|
103 %%
|
idamnjanovic@42
|
104 % Initialising solver structure
|
idamnjanovic@42
|
105 % Setting solver structure fields (toolbox, name, param, solution,
|
idamnjanovic@42
|
106 % reconstructed and time) to zero values
|
idamnjanovic@42
|
107
|
idamnjanovic@42
|
108 SMALL.solver(1)=SMALL_init_solver;
|
idamnjanovic@42
|
109
|
idamnjanovic@42
|
110 % Defining the parameters needed for image denoising
|
idamnjanovic@42
|
111
|
idamnjanovic@42
|
112 SMALL.solver(1).toolbox='ompbox';
|
idamnjanovic@42
|
113 SMALL.solver(1).name='omp2';
|
idamnjanovic@42
|
114 SMALL.solver(1).param=struct(...
|
idamnjanovic@42
|
115 'epsilon',Edata,...
|
idamnjanovic@42
|
116 'maxatoms', maxatoms);
|
idamnjanovic@42
|
117
|
ivan@84
|
118 % Denoising the image - find the sparse solution in the learned
|
ivan@84
|
119 % dictionary for all patches in the image and the end it uses
|
ivan@84
|
120 % reconstruction function to reconstruct the patches and put them into a
|
ivan@84
|
121 % denoised image
|
idamnjanovic@42
|
122
|
idamnjanovic@42
|
123 SMALL.solver(1)=SMALL_solve(SMALL.Problem, SMALL.solver(1));
|
ivan@84
|
124
|
ivan@84
|
125 % Show PSNR after reconstruction
|
ivan@84
|
126
|
idamnjanovic@42
|
127 SMALL.solver(1).reconstructed.psnr
|
ivan@84
|
128
|
idamnjanovic@42
|
129 %%
|
ivan@84
|
130 % For comparison purposes we will denoise image with overcomplete DCT
|
ivan@84
|
131 % here
|
ivan@84
|
132 % Set SMALL.Problem.A dictionary to be oDCT (i.e. Problem.initdict -
|
ivan@84
|
133 % since initial dictionaruy is already set to be oDCT when generating the
|
ivan@84
|
134 % denoising problem
|
idamnjanovic@42
|
135
|
idamnjanovic@42
|
136 SMALL.Problem.A = SMALL.Problem.initdict;
|
idamnjanovic@42
|
137 SMALL.DL(2).D=SMALL.Problem.initdict;
|
ivan@84
|
138
|
ivan@84
|
139 % Setting up reconstruction function
|
ivan@84
|
140
|
idamnjanovic@42
|
141 SparseDict=0;
|
idamnjanovic@42
|
142 SMALL.Problem.reconstruct = @(x) ImgDenoise_reconstruct(x, SMALL.Problem, SparseDict);
|
idamnjanovic@42
|
143
|
idamnjanovic@42
|
144 % Initialising solver structure
|
idamnjanovic@42
|
145 % Setting solver structure fields (toolbox, name, param, solution,
|
idamnjanovic@42
|
146 % reconstructed and time) to zero values
|
idamnjanovic@42
|
147
|
idamnjanovic@42
|
148 SMALL.solver(2)=SMALL_init_solver;
|
idamnjanovic@42
|
149
|
idamnjanovic@42
|
150 % Defining the parameters needed for image denoising
|
idamnjanovic@42
|
151
|
idamnjanovic@42
|
152 SMALL.solver(2).toolbox='ompbox';
|
idamnjanovic@42
|
153 SMALL.solver(2).name='omp2';
|
idamnjanovic@42
|
154 SMALL.solver(2).param=struct(...
|
idamnjanovic@42
|
155 'epsilon',Edata,...
|
idamnjanovic@42
|
156 'maxatoms', maxatoms);
|
idamnjanovic@42
|
157
|
ivan@84
|
158 % Denoising the image - find the sparse solution in the learned
|
ivan@84
|
159 % dictionary for all patches in the image and the end it uses
|
ivan@84
|
160 % reconstruction function to reconstruct the patches and put them into a
|
ivan@84
|
161 % denoised image
|
idamnjanovic@42
|
162
|
idamnjanovic@42
|
163 SMALL.solver(2)=SMALL_solve(SMALL.Problem, SMALL.solver(2));
|
idamnjanovic@42
|
164 %%
|
ivan@84
|
165 % In the b1 field all patches from the image are stored. For RLS-DLA we
|
ivan@84
|
166 % will first exclude all the patches that have l2 norm smaller then
|
ivan@84
|
167 % threshold and then take min(40000, number_of_remaining_patches) in
|
ivan@84
|
168 % ascending order as our training set (SMALL.Problem.b)
|
idamnjanovic@42
|
169
|
idamnjanovic@42
|
170 X=SMALL.Problem.b1;
|
idamnjanovic@42
|
171 X_norm=sqrt(sum(X.^2, 1));
|
idamnjanovic@42
|
172 [X_norm_sort, p]=sort(X_norm);
|
idamnjanovic@42
|
173 p1=p(X_norm_sort>Edata);
|
maria@83
|
174 if size(p1,2)>40000
|
idamnjanovic@42
|
175 p2 = randperm(size(p1,2));
|
idamnjanovic@42
|
176 p2=sort(p2(1:40000));
|
idamnjanovic@42
|
177 size(p2,2)
|
idamnjanovic@42
|
178 SMALL.Problem.b=X(:,p1(p2));
|
idamnjanovic@42
|
179 else
|
idamnjanovic@42
|
180 size(p1,2)
|
idamnjanovic@42
|
181 SMALL.Problem.b=X(:,p1);
|
idamnjanovic@42
|
182
|
idamnjanovic@42
|
183 end
|
idamnjanovic@42
|
184
|
ivan@84
|
185 % Forgetting factor for RLS-DLA algorithm, in this case we are using
|
ivan@84
|
186 % fixed value
|
ivan@84
|
187
|
idamnjanovic@42
|
188 lambda=0.9998
|
idamnjanovic@42
|
189
|
idamnjanovic@42
|
190 % Use Recursive Least Squares
|
idamnjanovic@42
|
191 % to Learn overcomplete dictionary
|
idamnjanovic@42
|
192
|
idamnjanovic@42
|
193 % Initialising Dictionary structure
|
idamnjanovic@42
|
194 % Setting Dictionary structure fields (toolbox, name, param, D and time)
|
idamnjanovic@42
|
195 % to zero values
|
idamnjanovic@42
|
196
|
idamnjanovic@42
|
197 SMALL.DL(3)=SMALL_init_DL();
|
idamnjanovic@42
|
198
|
idamnjanovic@42
|
199 % Defining fields needed for dictionary learning
|
idamnjanovic@42
|
200
|
idamnjanovic@42
|
201 SMALL.DL(3).toolbox = 'SMALL';
|
idamnjanovic@42
|
202 SMALL.DL(3).name = 'SMALL_rlsdla';
|
idamnjanovic@42
|
203 SMALL.DL(3).param=struct(...
|
idamnjanovic@42
|
204 'Edata', Edata,...
|
idamnjanovic@42
|
205 'initdict', SMALL.Problem.initdict,...
|
idamnjanovic@42
|
206 'dictsize', SMALL.Problem.p,...
|
idamnjanovic@42
|
207 'forgettingMode', 'FIX',...
|
ivan@85
|
208 'forgettingFactor', lambda,...
|
maria@86
|
209 'show_dict', 1000);
|
idamnjanovic@42
|
210
|
idamnjanovic@42
|
211
|
idamnjanovic@42
|
212 SMALL.DL(3) = SMALL_learn(SMALL.Problem, SMALL.DL(3));
|
idamnjanovic@42
|
213
|
idamnjanovic@42
|
214 % Initialising solver structure
|
idamnjanovic@42
|
215 % Setting solver structure fields (toolbox, name, param, solution,
|
idamnjanovic@42
|
216 % reconstructed and time) to zero values
|
idamnjanovic@42
|
217
|
ivan@84
|
218 SMALL.Problem.A = SMALL.DL(3).D;
|
ivan@84
|
219 SMALL.Problem.reconstruct = @(x) ImgDenoise_reconstruct(x, SMALL.Problem);
|
ivan@84
|
220
|
idamnjanovic@42
|
221 SMALL.solver(3)=SMALL_init_solver;
|
idamnjanovic@42
|
222
|
idamnjanovic@42
|
223 % Defining the parameters needed for image denoising
|
idamnjanovic@42
|
224
|
idamnjanovic@42
|
225 SMALL.solver(3).toolbox='ompbox';
|
idamnjanovic@42
|
226 SMALL.solver(3).name='omp2';
|
idamnjanovic@42
|
227 SMALL.solver(3).param=struct(...
|
idamnjanovic@42
|
228 'epsilon',Edata,...
|
idamnjanovic@42
|
229 'maxatoms', maxatoms);
|
idamnjanovic@42
|
230
|
idamnjanovic@42
|
231
|
idamnjanovic@42
|
232 SMALL.solver(3)=SMALL_solve(SMALL.Problem, SMALL.solver(3));
|
ivan@84
|
233
|
idamnjanovic@42
|
234 SMALL.solver(3).reconstructed.psnr
|
ivan@84
|
235
|
ivan@84
|
236
|
idamnjanovic@42
|
237 % show results %
|
idamnjanovic@42
|
238
|
idamnjanovic@42
|
239 SMALL_ImgDeNoiseResult(SMALL);
|
ivan@84
|
240
|
idamnjanovic@42
|
241 results(noise_ind,im_num).psnr.ksvd=SMALL.solver(1).reconstructed.psnr;
|
idamnjanovic@42
|
242 results(noise_ind,im_num).psnr.odct=SMALL.solver(2).reconstructed.psnr;
|
idamnjanovic@42
|
243 results(noise_ind,im_num).psnr.rlsdla=SMALL.solver(3).reconstructed.psnr;
|
idamnjanovic@42
|
244 results(noise_ind,im_num).vmrse.ksvd=SMALL.solver(1).reconstructed.vmrse;
|
idamnjanovic@42
|
245 results(noise_ind,im_num).vmrse.odct=SMALL.solver(2).reconstructed.vmrse;
|
idamnjanovic@42
|
246 results(noise_ind,im_num).vmrse.rlsdla=SMALL.solver(3).reconstructed.vmrse;
|
idamnjanovic@42
|
247 results(noise_ind,im_num).ssim.ksvd=SMALL.solver(1).reconstructed.ssim;
|
idamnjanovic@42
|
248 results(noise_ind,im_num).ssim.odct=SMALL.solver(2).reconstructed.ssim;
|
idamnjanovic@42
|
249 results(noise_ind,im_num).ssim.rlsdla=SMALL.solver(3).reconstructed.ssim;
|
idamnjanovic@42
|
250
|
idamnjanovic@42
|
251 results(noise_ind,im_num).time.ksvd=SMALL.solver(1).time+SMALL.DL(1).time;
|
idamnjanovic@42
|
252 results(noise_ind,im_num).time.rlsdla.time=SMALL.solver(3).time+SMALL.DL(3).time;
|
ivan@107
|
253 clear SMALL;
|
idamnjanovic@42
|
254 end
|
idamnjanovic@42
|
255 end
|
ivan@107
|
256 % save results.mat results
|