ivan@155
|
1 %% Dictionary Learning for Automatic Music Transcription - KSVD vs SPAMS
|
ivan@155
|
2 %
|
ivan@155
|
3 %
|
ivan@155
|
4 % This file contains an example of how SMALLbox can be used to test diferent
|
ivan@155
|
5 % dictionary learning techniques in Automatic Music Transcription problem.
|
ivan@155
|
6 % It calls generateAMT_Learning_Problem that will let you to choose midi,
|
ivan@155
|
7 % wave or mat file to be transcribe. If file is midi it will be first
|
ivan@155
|
8 % converted to wave and original midi file will be used for comparison with
|
ivan@155
|
9 % results of dictionary learning and reconstruction.
|
ivan@155
|
10 % The function will generarte the Problem structure that is used to learn
|
ivan@155
|
11 % Problem.p notes spectrograms from training set Problem.b using
|
ivan@155
|
12 % dictionary learning technique defined in DL structure.
|
ivan@155
|
13 % Two dictionary learning techniques were compared:
|
ivan@155
|
14 %
|
ivan@155
|
15 % - KSVD - M. Elad, R. Rubinstein, and M. Zibulevsky, "Efficient
|
ivan@155
|
16 % Implementation of the K-SVD Algorithm using Batch Orthogonal
|
ivan@155
|
17 % Matching Pursuit", Technical Report - CS, Technion, April 2008.
|
ivan@155
|
18 %
|
ivan@155
|
19 % - MMDL - M. Yaghoobi, T. Blumensath and M. Davies, "Dictionary Learning
|
ivan@155
|
20 % for Sparse Approximations with the Majorization Method", IEEE
|
ivan@155
|
21 % Trans. on Signal Processing, Vol. 57, No. 6, pp 2178-2191,
|
ivan@155
|
22 % 2009.
|
ivan@155
|
23
|
ivan@155
|
24 %
|
ivan@155
|
25 % Centre for Digital Music, Queen Mary, University of London.
|
ivan@155
|
26 % This file copyright 2011 Ivan Damnjanovic.
|
ivan@155
|
27 %
|
ivan@155
|
28 % This program is free software; you can redistribute it and/or
|
ivan@155
|
29 % modify it under the terms of the GNU General Public License as
|
ivan@155
|
30 % published by the Free Software Foundation; either version 2 of the
|
ivan@155
|
31 % License, or (at your option) any later version. See the file
|
ivan@155
|
32 % COPYING included with this distribution for more information.
|
ivan@155
|
33 %%
|
ivan@155
|
34
|
ivan@155
|
35 clear;
|
ivan@155
|
36
|
ivan@155
|
37
|
ivan@155
|
38 % Defining Automatic Transcription of Piano tune as Dictionary Learning
|
ivan@155
|
39 % Problem
|
ivan@155
|
40
|
ivan@161
|
41 SMALL.Problem = generateAMTProblem('',2048,0.75);
|
ivan@155
|
42
|
ivan@155
|
43 %%
|
ivan@155
|
44 % Use KSVD Dictionary Learning Algorithm to Learn 88 notes (defined in
|
ivan@155
|
45 % SMALL.Problem.p) using sparsity constrain only
|
ivan@155
|
46
|
ivan@155
|
47 % Initialising Dictionary structure
|
ivan@155
|
48 % Setting Dictionary structure fields (toolbox, name, param, D and time)
|
ivan@155
|
49 % to zero values
|
ivan@155
|
50
|
ivan@155
|
51 SMALL.DL(1)=SMALL_init_DL();
|
ivan@155
|
52
|
ivan@155
|
53 % Defining fields needed for dictionary learning
|
ivan@155
|
54
|
ivan@155
|
55 SMALL.DL(1).toolbox = 'KSVD';
|
ivan@155
|
56 SMALL.DL(1).name = 'ksvd';
|
ivan@155
|
57 % Defining the parameters for KSVD
|
ivan@155
|
58 % In this example we are learning 88 atoms in 100 iterations, so that
|
ivan@155
|
59 % every frame in the training set can be represented with maximum Tdata
|
ivan@155
|
60 % dictionary elements. Type help ksvd in MATLAB prompt for more options.
|
ivan@155
|
61
|
ivan@155
|
62 SMALL.DL(1).param=struct(...
|
ivan@155
|
63 'Tdata', 5,...
|
ivan@155
|
64 'dictsize', SMALL.Problem.p,...
|
ivan@155
|
65 'iternum', 50);
|
ivan@155
|
66
|
ivan@155
|
67 % Learn the dictionary
|
ivan@155
|
68
|
ivan@155
|
69 SMALL.DL(1) = SMALL_learn(SMALL.Problem, SMALL.DL(1));
|
ivan@155
|
70
|
ivan@155
|
71 % Set SMALL.Problem.A dictionary and reconstruction function
|
ivan@155
|
72 % (backward compatiblity with SPARCO: solver structure communicate
|
ivan@155
|
73 % only with Problem structure, ie no direct communication between DL and
|
ivan@155
|
74 % solver structures)
|
ivan@155
|
75
|
ivan@155
|
76 SMALL.Problem.A = SMALL.DL(1).D;
|
ivan@161
|
77 SMALL.Problem.reconstruct = @(x) AMT_reconstruct(x, SMALL.Problem);
|
ivan@155
|
78
|
ivan@155
|
79 %%
|
ivan@155
|
80 % Initialising solver structure
|
ivan@155
|
81 % Setting solver structure fields (toolbox, name, param, solution,
|
ivan@155
|
82 % reconstructed and time) to zero values
|
ivan@155
|
83 % As an example, SPAMS (Julien Mairal 2009) implementation of LARS
|
ivan@155
|
84 % algorithm is used for representation of training set in the learned
|
ivan@155
|
85 % dictionary.
|
ivan@155
|
86
|
ivan@155
|
87 SMALL.solver(1)=SMALL_init_solver;
|
ivan@155
|
88
|
ivan@155
|
89 % Defining the parameters needed for sparse representation
|
ivan@155
|
90
|
ivan@155
|
91 SMALL.solver(1).toolbox='SMALL';
|
ivan@163
|
92 SMALL.solver(1).name='SMALL_pcgp';
|
ivan@155
|
93
|
ivan@155
|
94 % Here we use mexLasso mode=2, with lambda=2, lambda2=0 and positivity
|
ivan@155
|
95 % constrain (type 'help mexLasso' for more information about modes):
|
ivan@155
|
96 %
|
ivan@155
|
97 % min_{alpha_i} (1/2)||x_i-Dalpha_i||_2^2 + lambda||alpha_i||_1 + (1/2)lambda2||alpha_i||_2^2
|
ivan@155
|
98
|
ivan@155
|
99 SMALL.solver(1).param='20, 1e-2';
|
ivan@155
|
100 % struct(...
|
ivan@155
|
101 % 'lambda', 2,...
|
ivan@155
|
102 % 'pos', 1,...
|
ivan@155
|
103 % 'mode', 2);
|
ivan@155
|
104
|
ivan@155
|
105 % Call SMALL_soolve to represent the signal in the given dictionary.
|
ivan@155
|
106 % As a final command SMALL_solve will call above defined reconstruction
|
ivan@155
|
107 % function to reconstruct the training set (Problem.b) in the learned
|
ivan@155
|
108 % dictionary (Problem.A)
|
ivan@155
|
109
|
ivan@155
|
110 SMALL.solver(1)=SMALL_solve(SMALL.Problem, SMALL.solver(1));
|
ivan@155
|
111
|
ivan@155
|
112 %%
|
ivan@155
|
113 % Analysis of the result of automatic music transcription. If groundtruth
|
ivan@155
|
114 % exists, we can compare transcribed notes and original and get usual
|
ivan@155
|
115 % True Positives, False Positives and False Negatives measures.
|
ivan@155
|
116
|
ivan@155
|
117 if ~isempty(SMALL.Problem.notesOriginal)
|
ivan@155
|
118 AMT_res(1) = AMT_analysis(SMALL.Problem, SMALL.solver(1));
|
ivan@155
|
119 end
|
ivan@155
|
120
|
ivan@155
|
121
|
ivan@155
|
122
|
ivan@155
|
123 %%
|
ivan@155
|
124 % % Here we solve the same problem using non-negative sparse coding with
|
ivan@155
|
125 % % SPAMS online dictionary learning (Julien Mairal 2009)
|
ivan@155
|
126 % %
|
ivan@155
|
127 % Initialising solver structure
|
ivan@155
|
128 % Setting solver structure fields (toolbox, name, param, solution,
|
ivan@155
|
129 % reconstructed and time) to zero values
|
ivan@155
|
130 % As an example, SPAMS (Julien Mairal 2009) implementation of LARS
|
ivan@155
|
131 % algorithm is used for representation of training set in the learned
|
ivan@155
|
132 % dictionary.
|
ivan@155
|
133
|
ivan@155
|
134 SMALL.solver(2)=SMALL_init_solver;
|
ivan@155
|
135
|
ivan@155
|
136 % Defining the parameters needed for sparse representation
|
ivan@155
|
137
|
ivan@155
|
138 SMALL.solver(2).toolbox='SPAMS';
|
ivan@155
|
139 SMALL.solver(2).name='mexLasso';
|
ivan@155
|
140
|
ivan@155
|
141 % Here we use mexLasso mode=2, with lambda=3, lambda2=0 and positivity
|
ivan@155
|
142 % constrain (type 'help mexLasso' for more information about modes):
|
ivan@155
|
143 %
|
ivan@155
|
144 % min_{alpha_i} (1/2)||x_i-Dalpha_i||_2^2 + lambda||alpha_i||_1 + (1/2)lambda2||alpha_i||_2^2
|
ivan@155
|
145
|
ivan@155
|
146 SMALL.solver(2).param=struct('lambda', 3, 'pos', 1, 'mode', 2);
|
ivan@155
|
147
|
ivan@155
|
148
|
ivan@155
|
149 % You can also test ALPS, IST from MMbox or any other solver, but results
|
ivan@155
|
150 % are not as good as SPAMS
|
ivan@155
|
151 %
|
ivan@155
|
152 % % Initialising solver structure
|
ivan@155
|
153 % % Setting solver structure fields (toolbox, name, param, solution,
|
ivan@155
|
154 % % reconstructed and time) to zero values
|
ivan@155
|
155 %
|
ivan@155
|
156 % SMALL.solver(2)=SMALL_init_solver;
|
ivan@155
|
157 %
|
ivan@155
|
158 % % Defining the parameters needed for image denoising
|
ivan@155
|
159 %
|
ivan@155
|
160 % SMALL.solver(2).toolbox='ALPS';
|
ivan@155
|
161 % SMALL.solver(2).name='AlebraicPursuit';
|
ivan@155
|
162 %
|
ivan@155
|
163 % SMALL.solver(2).param=struct(...
|
ivan@155
|
164 % 'sparsity', 10,...
|
ivan@155
|
165 % 'memory', 1,...
|
ivan@155
|
166 % 'mode', 6,...
|
ivan@155
|
167 % 'iternum', 100,...
|
ivan@155
|
168 % 'tau',-1,...
|
ivan@155
|
169 % 'tolerance', 1e-14',...
|
ivan@155
|
170 % 'verbose',1);
|
ivan@155
|
171
|
ivan@155
|
172 % % Initialising Dictionary structure
|
ivan@155
|
173 % % Setting Dictionary structure fields (toolbox, name, param, D and time)
|
ivan@155
|
174 % % to zero values
|
ivan@155
|
175 % % Initialising solver structure
|
ivan@155
|
176 % % Setting solver structure fields (toolbox, name, param, solution,
|
ivan@155
|
177 % % reconstructed and time) to zero values
|
ivan@155
|
178 %
|
ivan@155
|
179 % SMALL.solver(2)=SMALL_init_solver;
|
ivan@155
|
180 %
|
ivan@155
|
181 % % Defining the parameters needed for image denoising
|
ivan@155
|
182 %
|
ivan@155
|
183 % SMALL.solver(2).toolbox='MMbox';
|
ivan@155
|
184 % SMALL.solver(2).name='mm1';
|
ivan@155
|
185 % SMALL.solver(2).param=struct(...
|
ivan@155
|
186 % 'lambda',50,...
|
ivan@155
|
187 % 'iternum',1000,...
|
ivan@155
|
188 % 'map',0);
|
ivan@155
|
189
|
ivan@155
|
190 SMALL.DL(2)=SMALL_init_DL('MMbox', 'MM_cn', '', 1);
|
ivan@155
|
191
|
ivan@155
|
192
|
ivan@155
|
193 % Defining the parameters for Majorization Minimization dictionary update
|
ivan@155
|
194 %
|
ivan@155
|
195 % In this example we are learning 88 atoms in 200 iterations, so that
|
ivan@155
|
196
|
ivan@155
|
197
|
ivan@155
|
198 SMALL.DL(2).param=struct(...
|
ivan@155
|
199 'solver', SMALL.solver(2),...
|
ivan@155
|
200 'initdict', SMALL.Problem.A,...
|
ivan@155
|
201 'dictsize', SMALL.Problem.p,...
|
ivan@155
|
202 'iternum', 200,...
|
ivan@155
|
203 'iterDictUpdate', 1000,...
|
ivan@155
|
204 'epsDictUpdate', 1e-7,...
|
ivan@155
|
205 'cvset',0,...
|
ivan@155
|
206 'show_dict', 0);
|
ivan@155
|
207
|
ivan@155
|
208
|
ivan@155
|
209 % Learn the dictionary
|
ivan@155
|
210
|
ivan@155
|
211 SMALL.DL(2) = SMALL_learn(SMALL.Problem, SMALL.DL(2));
|
ivan@155
|
212
|
ivan@155
|
213 % Set SMALL.Problem.A dictionary and reconstruction function
|
ivan@155
|
214 % (backward compatiblity with SPARCO: solver structure communicate
|
ivan@155
|
215 % only with Problem structure, ie no direct communication between DL and
|
ivan@155
|
216 % solver structures)
|
ivan@155
|
217
|
ivan@155
|
218 SMALL.Problem.A = SMALL.DL(2).D;
|
ivan@161
|
219 SMALL.Problem.reconstruct=@(x) AMT_reconstruct(x, SMALL.Problem);
|
ivan@155
|
220
|
ivan@155
|
221
|
ivan@155
|
222 % Call SMALL_soolve to represent the signal in the given dictionary.
|
ivan@155
|
223 % As a final command SMALL_solve will call above defined reconstruction
|
ivan@155
|
224 % function to reconstruct the training set (Problem.b) in the learned
|
ivan@155
|
225 % dictionary (Problem.A)
|
ivan@155
|
226
|
ivan@155
|
227 SMALL.solver(2)=SMALL_solve(SMALL.Problem, SMALL.solver(2));
|
ivan@155
|
228
|
ivan@155
|
229
|
ivan@155
|
230 % Analysis of the result of automatic music transcription. If groundtruth
|
ivan@155
|
231 % exists, we can compare transcribed notes and original and get usual
|
ivan@155
|
232 % True Positives, False Positives and False Negatives measures.
|
ivan@155
|
233
|
ivan@155
|
234 if ~isempty(SMALL.Problem.notesOriginal)
|
ivan@155
|
235 AMT_res(2) = AMT_analysis(SMALL.Problem, SMALL.solver(2));
|
ivan@155
|
236 end
|
ivan@155
|
237
|
ivan@155
|
238
|
ivan@155
|
239 % Plot results and save midi files
|
ivan@155
|
240
|
ivan@155
|
241 if ~isempty(SMALL.Problem.notesOriginal)
|
ivan@155
|
242 figAMT = SMALL_AMT_plot(SMALL, AMT_res);
|
ivan@155
|
243 else
|
ivan@155
|
244 figAMT = figure('Name', 'Automatic Music Transcription KSVD vs SPAMS');
|
ivan@155
|
245 subplot(2,1,1); plot(SMALL.solver(1).reconstructed.notes(:,5), SMALL.solver(1).reconstructed.notes(:,3), 'kd ');
|
ivan@155
|
246 title (sprintf('%s dictionary in %.2f s', SMALL.DL(1).name, SMALL.DL(1).time));
|
ivan@155
|
247 xlabel('Time');
|
ivan@155
|
248 ylabel('Note Number');
|
ivan@155
|
249 subplot(2,1,2); plot(SMALL.solver(2).reconstructed.notes(:,5), SMALL.solver(2).reconstructed.notes(:,3), 'b* ');
|
ivan@155
|
250 title (sprintf('%s dictionary in %.2f s', SMALL.DL(2).name, SMALL.DL(2).time));
|
ivan@155
|
251 xlabel('Time');
|
ivan@155
|
252 ylabel('Note Number');
|
ivan@155
|
253 end
|
ivan@155
|
254
|
ivan@155
|
255 FS=filesep;
|
ivan@155
|
256
|
luis@186
|
257 [pathstr1, name, ext] = fileparts(which('SMALLboxSetup.m'));
|
ivan@155
|
258 cd([pathstr1,FS,'results']);
|
ivan@155
|
259
|
ivan@155
|
260 [filename,pathname] = uiputfile({' *.mid;' },'Save KSVD result midi');
|
ivan@155
|
261 if filename~=0 writemidi(SMALL.solver(1).reconstructed.midi, [pathname,FS,filename]);end
|
ivan@155
|
262
|
ivan@155
|
263 [filename,pathname] = uiputfile({' *.mid;' },'Save SPAMS result midi');
|
ivan@155
|
264 if filename~=0 writemidi(SMALL.solver(2).reconstructed.midi, [pathname,FS,filename]);end
|
ivan@155
|
265
|
ivan@155
|
266 [filename,pathname] = uiputfile({' *.fig;' },'Save KSVD vs SPAMS AMT figure');
|
ivan@155
|
267 if filename~=0 saveas(figAMT, [pathname,FS,filename]);end
|
ivan@155
|
268
|
ivan@155
|
269
|
ivan@155
|
270
|