ivan@161
|
1 function data = generateImageDenoiseProblem(im, trainnum, blocksize,...
|
ivan@161
|
2 dictsize, sigma, gain, maxval, initdict)
|
ivan@128
|
3 %% Generate Image Denoising Problem
|
idamnjanovic@21
|
4 %
|
idamnjanovic@10
|
5 % generateImageDenoiseProblem is a part of the SMALLbox and generates
|
idamnjanovic@10
|
6 % a problem that can be used for comparison of Dictionary Learning/Sparse
|
idamnjanovic@10
|
7 % Representation techniques in image denoising scenario.
|
idamnjanovic@10
|
8 % The function takes as an input:
|
idamnjanovic@10
|
9 % - im - image matrix (if not present function promts user for an
|
idamnjanovic@10
|
10 % image file) ,
|
idamnjanovic@10
|
11 % - trainnum - number of training samples (default - 40000)
|
idamnjanovic@10
|
12 % - blocksize - block (patch) vertical/horizontal dimension (default 8),
|
idamnjanovic@10
|
13 % - dictsize - dictionary size (default - 256),
|
idamnjanovic@10
|
14 % - sigma - noise level (default - 20),
|
idamnjanovic@10
|
15 % - noise gain (default - 1.15),
|
idamnjanovic@10
|
16 % - maxval - maximum value (default - 255)
|
idamnjanovic@10
|
17 % - initdict - initial dictionary (default - 4x overcomlete dct)
|
idamnjanovic@10
|
18 %
|
idamnjanovic@10
|
19 % The output of the function is stucture with following fields:
|
idamnjanovic@10
|
20 % - name - name of the original image (if image is read inside of the
|
idamnjanovic@10
|
21 % function)
|
idamnjanovic@10
|
22 % - Original - original image matrix,
|
idamnjanovic@10
|
23 % - Noisy - image with added noise,
|
idamnjanovic@10
|
24 % - b - training patches,
|
idamnjanovic@10
|
25 % - m - size of training patches (default 64),
|
idamnjanovic@10
|
26 % - n - number of training patches,
|
idamnjanovic@10
|
27 % - p - number of dictionary elements to be learned,
|
idamnjanovic@10
|
28 % - blocksize - block size (default [8 8]),
|
idamnjanovic@10
|
29 % - sigma - noise level,
|
idamnjanovic@10
|
30 % - noise gain (default - 1.15),
|
idamnjanovic@10
|
31 % - maxval - maximum value (default - 255)
|
idamnjanovic@10
|
32 % - initdict - initial dictionary (default - 4x overcomlete dct)
|
idamnjanovic@10
|
33 % - signalDim - signal dimension (default - 2)
|
ivan@125
|
34
|
ivan@125
|
35 %
|
ivan@125
|
36 % Centre for Digital Music, Queen Mary, University of London.
|
ivan@125
|
37 % This file copyright 2010 Ivan Damnjanovic.
|
ivan@125
|
38 %
|
ivan@125
|
39 % This program is free software; you can redistribute it and/or
|
ivan@125
|
40 % modify it under the terms of the GNU General Public License as
|
ivan@125
|
41 % published by the Free Software Foundation; either version 2 of the
|
ivan@125
|
42 % License, or (at your option) any later version. See the file
|
ivan@125
|
43 % COPYING included with this distribution for more information.
|
idamnjanovic@10
|
44 %
|
idamnjanovic@10
|
45 % Based on KSVD denoise demo by Ron Rubinstein
|
idamnjanovic@10
|
46 % See also KSVDDENOISEDEMO and KSVDDEMO.
|
idamnjanovic@10
|
47 % Ron Rubinstein
|
idamnjanovic@10
|
48 % Computer Science Department
|
idamnjanovic@10
|
49 % Technion, Haifa 32000 Israel
|
idamnjanovic@10
|
50 % ronrubin@cs
|
idamnjanovic@10
|
51 % August 2009
|
idamnjanovic@10
|
52 %%
|
idamnjanovic@10
|
53 disp(' ');
|
idamnjanovic@10
|
54 disp(' ********** Denoising Problem **********');
|
idamnjanovic@10
|
55 disp(' ');
|
idamnjanovic@10
|
56 disp(' This function reads an image, adds random Gaussian noise,');
|
idamnjanovic@10
|
57 disp(' that can be later denoised by using dictionary learning techniques.');
|
idamnjanovic@10
|
58 disp(' ');
|
idamnjanovic@10
|
59
|
idamnjanovic@10
|
60
|
idamnjanovic@10
|
61 %% prompt user for image %%
|
idamnjanovic@10
|
62 %ask for file name
|
idamnjanovic@10
|
63 FS=filesep;
|
idamnjanovic@10
|
64 TMPpath=pwd;
|
idamnjanovic@10
|
65 if ~ exist( 'im', 'var' ) || isempty(im)
|
luis@186
|
66 [pathstr1, name, ext] = fileparts(which('SMALLboxSetup.m'));
|
idamnjanovic@10
|
67 cd([pathstr1,FS,'data',FS,'images']);
|
idamnjanovic@17
|
68 [filename,pathname] = uigetfile({'*.png;'},'Select an image');
|
luis@186
|
69 [pathstr, name, ext] = fileparts(filename);
|
idamnjanovic@10
|
70 data.name=name;
|
idamnjanovic@10
|
71 im = imread(filename);
|
idamnjanovic@44
|
72 %im = double(im);
|
idamnjanovic@10
|
73 end;
|
idamnjanovic@44
|
74 im = double(im);
|
idamnjanovic@10
|
75 cd(TMPpath);
|
idamnjanovic@10
|
76
|
idamnjanovic@10
|
77 %% check input parameters %%
|
idamnjanovic@10
|
78
|
idamnjanovic@10
|
79 if ~ exist( 'blocksize', 'var' ) || isempty(blocksize),blocksize = 8;end
|
idamnjanovic@10
|
80 if ~ exist( 'dictsize', 'var' ) || isempty(dictsize), dictsize = 256;end
|
idamnjanovic@10
|
81 if ~ exist( 'trainnum', 'var' ) || isempty(trainnum),trainnum = 40000;end
|
idamnjanovic@10
|
82 if ~ exist( 'sigma', 'var' ) || isempty(sigma), sigma = 20; end
|
idamnjanovic@10
|
83 if ~ exist( 'gain', 'var' ) || isempty(gain), gain = 1.15; end
|
idamnjanovic@10
|
84 if ~ exist( 'maxval', 'var' ) || isempty(maxval), maxval = 255; end
|
idamnjanovic@10
|
85 if ~ exist( 'initdict', 'var' ) || isempty(initdict), initdict = 'odct'; end
|
idamnjanovic@10
|
86
|
idamnjanovic@10
|
87 %% generate noisy image %%
|
idamnjanovic@10
|
88
|
idamnjanovic@10
|
89 disp(' ');
|
idamnjanovic@10
|
90 disp('Generating noisy image...');
|
idamnjanovic@10
|
91
|
idamnjanovic@10
|
92 n = randn(size(im)) * sigma;
|
idamnjanovic@10
|
93 imnoise = im + n;
|
idamnjanovic@10
|
94
|
idamnjanovic@10
|
95 %% set parameters %%
|
idamnjanovic@10
|
96
|
idamnjanovic@10
|
97 x = imnoise;
|
idamnjanovic@10
|
98 p = ndims(x);
|
idamnjanovic@44
|
99 psnr=20*log10(maxval * sqrt(numel(im)) / norm(im(:)-imnoise(:)));
|
idamnjanovic@10
|
100 if (p==2 && any(size(x)==1) && length(blocksize)==1)
|
idamnjanovic@10
|
101 p = 1;
|
idamnjanovic@10
|
102 end
|
idamnjanovic@10
|
103
|
idamnjanovic@10
|
104 % blocksize %
|
idamnjanovic@10
|
105
|
idamnjanovic@10
|
106 if (numel(blocksize)==1)
|
idamnjanovic@10
|
107 blocksize = ones(1,p)*blocksize;
|
idamnjanovic@10
|
108 end
|
idamnjanovic@10
|
109
|
idamnjanovic@10
|
110 if (strcmpi(initdict,'odct'))
|
idamnjanovic@10
|
111 initdict = odctndict(blocksize,dictsize,p);
|
idamnjanovic@10
|
112 elseif (strcmpi(initdict,'data'))
|
idamnjanovic@10
|
113 clear initdict; % causes initialization using random examples
|
idamnjanovic@10
|
114 else
|
idamnjanovic@10
|
115 error('Invalid initial dictionary specified.');
|
idamnjanovic@10
|
116 end
|
idamnjanovic@10
|
117
|
idamnjanovic@10
|
118 if exist( 'initdict', 'var' )
|
idamnjanovic@10
|
119 initdict = initdict(:,1:dictsize);
|
idamnjanovic@10
|
120 end
|
idamnjanovic@10
|
121
|
idamnjanovic@10
|
122 %%%% create training data %%%
|
idamnjanovic@10
|
123
|
idamnjanovic@10
|
124 ids = cell(p,1);
|
idamnjanovic@10
|
125 if (p==1)
|
idamnjanovic@10
|
126 ids{1} = reggrid(length(x)-blocksize+1, trainnum, 'eqdist');
|
idamnjanovic@10
|
127 else
|
idamnjanovic@10
|
128 [ids{:}] = reggrid(size(x)-blocksize+1, trainnum, 'eqdist');
|
idamnjanovic@10
|
129 end
|
idamnjanovic@10
|
130 X = sampgrid(x,blocksize,ids{:});
|
idamnjanovic@10
|
131
|
idamnjanovic@10
|
132 % remove dc in blocks to conserve memory %
|
idamnjanovic@10
|
133
|
idamnjanovic@10
|
134 bsize = 2000;
|
idamnjanovic@10
|
135 for i = 1:bsize:size(X,2)
|
idamnjanovic@10
|
136 blockids = i : min(i+bsize-1,size(X,2));
|
idamnjanovic@10
|
137 X(:,blockids) = remove_dc(X(:,blockids),'columns');
|
idamnjanovic@10
|
138 end
|
idamnjanovic@10
|
139
|
idamnjanovic@44
|
140 % Noisy image blocks
|
ivan@111
|
141 xcol=im2colstep(x,blocksize);
|
idamnjanovic@44
|
142 [b1, dc] = remove_dc(xcol,'columns');
|
idamnjanovic@44
|
143
|
idamnjanovic@10
|
144 %% output structure %%
|
idamnjanovic@10
|
145
|
idamnjanovic@10
|
146 data.Original = im;
|
idamnjanovic@10
|
147 data.Noisy = imnoise;
|
idamnjanovic@44
|
148 data.noisy_psnr=psnr;
|
idamnjanovic@10
|
149 data.b = X;
|
idamnjanovic@44
|
150 data.b1=b1;
|
idamnjanovic@44
|
151 data.b1dc=dc;
|
idamnjanovic@10
|
152 data.m = size(X,1);
|
idamnjanovic@10
|
153 data.n = size(X,2);
|
idamnjanovic@10
|
154 data.p = dictsize;
|
idamnjanovic@10
|
155 data.blocksize=blocksize;
|
idamnjanovic@10
|
156 data.sigma = sigma;
|
idamnjanovic@10
|
157 data.gain = gain;
|
idamnjanovic@10
|
158 data.maxval = maxval;
|
idamnjanovic@10
|
159 data.initdict= initdict;
|
idamnjanovic@10
|
160 data.signalDim=2;
|
idamnjanovic@65
|
161 data.sparse=1;
|
idamnjanovic@10
|
162 end %% end of function |