idamnjanovic@6
|
1 %% DICTIONARY LEARNING FOR IMAGE DENOISING
|
idamnjanovic@25
|
2 %
|
idamnjanovic@25
|
3 % Centre for Digital Music, Queen Mary, University of London.
|
idamnjanovic@25
|
4 % This file copyright 2009 Ivan Damnjanovic.
|
idamnjanovic@25
|
5 %
|
idamnjanovic@25
|
6 % This program is free software; you can redistribute it and/or
|
idamnjanovic@25
|
7 % modify it under the terms of the GNU General Public License as
|
idamnjanovic@25
|
8 % published by the Free Software Foundation; either version 2 of the
|
idamnjanovic@25
|
9 % License, or (at your option) any later version. See the file
|
idamnjanovic@25
|
10 % COPYING included with this distribution for more information.
|
idamnjanovic@25
|
11 %
|
idamnjanovic@6
|
12 % This file contains an example of how SMALLbox can be used to test different
|
idamnjanovic@6
|
13 % dictionary learning techniques in Image Denoising problem.
|
idamnjanovic@6
|
14 % It calls generateImageDenoiseProblem that will let you to choose image,
|
idamnjanovic@6
|
15 % add noise and use noisy image to generate training set for dictionary
|
idamnjanovic@6
|
16 % learning.
|
idamnjanovic@6
|
17 % Three dictionary learning techniques were compared:
|
idamnjanovic@6
|
18 % - KSVD - M. Elad, R. Rubinstein, and M. Zibulevsky, "Efficient
|
idamnjanovic@6
|
19 % Implementation of the K-SVD Algorithm using Batch Orthogonal
|
idamnjanovic@6
|
20 % Matching Pursuit", Technical Report - CS, Technion, April 2008.
|
idamnjanovic@6
|
21 % - KSVDS - R. Rubinstein, M. Zibulevsky, and M. Elad, "Learning Sparse
|
idamnjanovic@6
|
22 % Dictionaries for Sparse Signal Approximation", Technical
|
idamnjanovic@6
|
23 % Report - CS, Technion, June 2009.
|
idamnjanovic@6
|
24 % - SPAMS - J. Mairal, F. Bach, J. Ponce and G. Sapiro. Online
|
idamnjanovic@6
|
25 % Dictionary Learning for Sparse Coding. International
|
idamnjanovic@6
|
26 % Conference on Machine Learning,Montreal, Canada, 2009
|
idamnjanovic@6
|
27 %
|
idamnjanovic@6
|
28 %
|
idamnjanovic@6
|
29 %%
|
idamnjanovic@6
|
30
|
idamnjanovic@6
|
31 clear;
|
idamnjanovic@6
|
32
|
idamnjanovic@6
|
33 % If you want to load the image outside of generateImageDenoiseProblem
|
idamnjanovic@6
|
34 % function uncomment following lines. This can be useful if you want to
|
idamnjanovic@6
|
35 % denoise more then one image for example.
|
idamnjanovic@6
|
36
|
idamnjanovic@6
|
37 % TMPpath=pwd;
|
idamnjanovic@6
|
38 % FS=filesep;
|
idamnjanovic@6
|
39 % [pathstr1, name, ext, versn] = fileparts(which('SMALLboxSetup.m'));
|
idamnjanovic@6
|
40 % cd([pathstr1,FS,'data',FS,'images']);
|
idamnjanovic@6
|
41 % [filename,pathname] = uigetfile({'*.png;'},'Select a file containin pre-calculated notes');
|
idamnjanovic@6
|
42 % [pathstr, name, ext, versn] = fileparts(filename);
|
idamnjanovic@6
|
43 % test_image = imread(filename);
|
idamnjanovic@6
|
44 % test_image = double(test_image);
|
idamnjanovic@6
|
45 % cd(TMPpath);
|
idamnjanovic@6
|
46 % SMALL.Problem.name=name;
|
idamnjanovic@6
|
47
|
idamnjanovic@6
|
48
|
idamnjanovic@6
|
49 % Defining Image Denoising Problem as Dictionary Learning
|
idamnjanovic@6
|
50 % Problem. As an input we set the number of training patches.
|
idamnjanovic@6
|
51
|
idamnjanovic@6
|
52 SMALL.Problem = generateImageDenoiseProblem('', 40000);
|
idamnjanovic@6
|
53
|
idamnjanovic@6
|
54
|
idamnjanovic@6
|
55 %%
|
idamnjanovic@6
|
56 % Use KSVD Dictionary Learning Algorithm to Learn overcomplete dictionary
|
idamnjanovic@6
|
57
|
idamnjanovic@6
|
58 % Initialising Dictionary structure
|
idamnjanovic@6
|
59 % Setting Dictionary structure fields (toolbox, name, param, D and time)
|
idamnjanovic@6
|
60 % to zero values
|
idamnjanovic@6
|
61
|
idamnjanovic@6
|
62 SMALL.DL(1)=SMALL_init_DL();
|
idamnjanovic@6
|
63
|
idamnjanovic@6
|
64 % Defining the parameters needed for dictionary learning
|
idamnjanovic@6
|
65
|
idamnjanovic@6
|
66 SMALL.DL(1).toolbox = 'KSVD';
|
idamnjanovic@6
|
67 SMALL.DL(1).name = 'ksvd';
|
idamnjanovic@6
|
68
|
idamnjanovic@6
|
69 % Defining the parameters for KSVD
|
idamnjanovic@6
|
70 % In this example we are learning 256 atoms in 20 iterations, so that
|
idamnjanovic@6
|
71 % every patch in the training set can be represented with target error in
|
idamnjanovic@6
|
72 % L2-norm (EData)
|
idamnjanovic@6
|
73 % Type help ksvd in MATLAB prompt for more options.
|
idamnjanovic@6
|
74
|
idamnjanovic@6
|
75 Edata=sqrt(prod(SMALL.Problem.blocksize)) * SMALL.Problem.sigma * SMALL.Problem.gain;
|
idamnjanovic@6
|
76 SMALL.DL(1).param=struct(...
|
idamnjanovic@6
|
77 'Edata', Edata,...
|
idamnjanovic@6
|
78 'initdict', SMALL.Problem.initdict,...
|
idamnjanovic@6
|
79 'dictsize', SMALL.Problem.p,...
|
idamnjanovic@6
|
80 'iternum', 20,...
|
idamnjanovic@6
|
81 'memusage', 'high');
|
idamnjanovic@6
|
82
|
idamnjanovic@6
|
83 % Learn the dictionary
|
idamnjanovic@6
|
84
|
idamnjanovic@6
|
85 SMALL.DL(1) = SMALL_learn(SMALL.Problem, SMALL.DL(1));
|
idamnjanovic@6
|
86
|
idamnjanovic@6
|
87 % Set SMALL.Problem.A dictionary
|
idamnjanovic@6
|
88 % (backward compatiblity with SPARCO: solver structure communicate
|
idamnjanovic@6
|
89 % only with Problem structure, ie no direct communication between DL and
|
idamnjanovic@6
|
90 % solver structures)
|
idamnjanovic@6
|
91
|
idamnjanovic@6
|
92 SMALL.Problem.A = SMALL.DL(1).D;
|
idamnjanovic@6
|
93
|
idamnjanovic@6
|
94
|
idamnjanovic@6
|
95 %%
|
idamnjanovic@6
|
96 % Initialising solver structure
|
idamnjanovic@6
|
97 % Setting solver structure fields (toolbox, name, param, solution,
|
idamnjanovic@6
|
98 % reconstructed and time) to zero values
|
idamnjanovic@6
|
99
|
idamnjanovic@6
|
100 SMALL.solver(1)=SMALL_init_solver;
|
idamnjanovic@6
|
101
|
idamnjanovic@6
|
102 % Defining the parameters needed for image denoising
|
idamnjanovic@6
|
103
|
idamnjanovic@6
|
104 SMALL.solver(1).toolbox='ompbox';
|
idamnjanovic@6
|
105 SMALL.solver(1).name='ompdenoise';
|
idamnjanovic@6
|
106
|
idamnjanovic@6
|
107 % Denoising the image - SMALL_denoise function is similar to SMALL_solve,
|
idamnjanovic@6
|
108 % but backward compatible with KSVD definition of denoising
|
idamnjanovic@6
|
109
|
idamnjanovic@6
|
110 SMALL.solver(1)=SMALL_denoise(SMALL.Problem, SMALL.solver(1));
|
idamnjanovic@6
|
111
|
idamnjanovic@6
|
112 %%
|
idamnjanovic@6
|
113 % Use KSVDS Dictionary Learning Algorithm to denoise image
|
idamnjanovic@6
|
114
|
idamnjanovic@6
|
115 % Initialising solver structure
|
idamnjanovic@6
|
116 % Setting solver structure fields (toolbox, name, param, solution,
|
idamnjanovic@6
|
117 % reconstructed and time) to zero values
|
idamnjanovic@6
|
118
|
idamnjanovic@6
|
119 SMALL.DL(2)=SMALL_init_DL();
|
idamnjanovic@6
|
120
|
idamnjanovic@6
|
121 % Defining the parameters needed for dictionary learning
|
idamnjanovic@6
|
122
|
idamnjanovic@6
|
123 SMALL.DL(2).toolbox = 'KSVDS';
|
idamnjanovic@6
|
124 SMALL.DL(2).name = 'ksvds';
|
idamnjanovic@6
|
125
|
idamnjanovic@6
|
126 % Defining the parameters for KSVDS
|
idamnjanovic@6
|
127 % In this example we are learning 256 atoms in 20 iterations, so that
|
idamnjanovic@6
|
128 % every patch in the training set can be represented with target error in
|
idamnjanovic@6
|
129 % L2-norm (EDataS). We also impose "double sparsity" - dictionary itself
|
idamnjanovic@6
|
130 % has to be sparse in the given base dictionary (Tdict - number of
|
idamnjanovic@6
|
131 % nonzero elements per atom).
|
idamnjanovic@6
|
132 % Type help ksvds in MATLAB prompt for more options.
|
idamnjanovic@6
|
133
|
idamnjanovic@6
|
134 EdataS=sqrt(prod(SMALL.Problem.blocksize)) * SMALL.Problem.sigma * SMALL.Problem.gain;
|
idamnjanovic@6
|
135 SMALL.DL(2).param=struct(...
|
idamnjanovic@6
|
136 'Edata', EdataS, ...
|
idamnjanovic@6
|
137 'Tdict', 6,...
|
idamnjanovic@6
|
138 'stepsize', 1,...
|
idamnjanovic@6
|
139 'dictsize', SMALL.Problem.p,...
|
idamnjanovic@6
|
140 'iternum', 20,...
|
idamnjanovic@6
|
141 'memusage', 'high');
|
idamnjanovic@6
|
142 SMALL.DL(2).param.initA = speye(SMALL.Problem.p);
|
idamnjanovic@6
|
143 SMALL.DL(2).param.basedict{1} = odctdict(8,16);
|
idamnjanovic@6
|
144 SMALL.DL(2).param.basedict{2} = odctdict(8,16);
|
idamnjanovic@6
|
145
|
idamnjanovic@6
|
146 % Learn the dictionary
|
idamnjanovic@6
|
147
|
idamnjanovic@6
|
148 SMALL.DL(2) = SMALL_learn(SMALL.Problem, SMALL.DL(2));
|
idamnjanovic@6
|
149
|
idamnjanovic@6
|
150 % Set SMALL.Problem.A dictionary and SMALL.Problem.basedictionary
|
idamnjanovic@6
|
151 % (backward compatiblity with SPARCO: solver structure communicate
|
idamnjanovic@6
|
152 % only with Problem structure, ie no direct communication between DL and
|
idamnjanovic@6
|
153 % solver structures)
|
idamnjanovic@6
|
154
|
idamnjanovic@6
|
155 SMALL.Problem.A = SMALL.DL(2).D;
|
idamnjanovic@6
|
156 SMALL.Problem.basedict{1} = SMALL.DL(2).param.basedict{1};
|
idamnjanovic@6
|
157 SMALL.Problem.basedict{2} = SMALL.DL(2).param.basedict{2};
|
idamnjanovic@6
|
158
|
idamnjanovic@6
|
159 %%
|
idamnjanovic@6
|
160 % Initialising solver structure
|
idamnjanovic@6
|
161 % Setting solver structure fields (toolbox, name, param, solution,
|
idamnjanovic@6
|
162 % reconstructed and time) to zero values
|
idamnjanovic@6
|
163
|
idamnjanovic@6
|
164 SMALL.solver(2)=SMALL_init_solver;
|
idamnjanovic@6
|
165
|
idamnjanovic@6
|
166 % Defining the parameters needed for image denoising
|
idamnjanovic@6
|
167
|
idamnjanovic@6
|
168 SMALL.solver(2).toolbox='ompsbox';
|
idamnjanovic@6
|
169 SMALL.solver(2).name='ompsdenoise';
|
idamnjanovic@6
|
170
|
idamnjanovic@6
|
171 % Denoising the image - SMALL_denoise function is similar to SMALL_solve,
|
idamnjanovic@6
|
172 % but backward compatible with KSVD definition of denoising
|
idamnjanovic@6
|
173 % Pay attention that since implicit base dictionary is used, denoising
|
idamnjanovic@6
|
174 % can be much faster then using explicit dictionary in KSVD example.
|
idamnjanovic@6
|
175
|
idamnjanovic@6
|
176 SMALL.solver(2)=SMALL_denoise(SMALL.Problem, SMALL.solver(2));
|
idamnjanovic@6
|
177
|
idamnjanovic@13
|
178 % %%
|
idamnjanovic@13
|
179 % % Use SPAMS Online Dictionary Learning Algorithm
|
idamnjanovic@13
|
180 % % to Learn overcomplete dictionary (Julien Mairal 2009)
|
idamnjanovic@13
|
181 % % (If you have not installed SPAMS please comment the following two cells)
|
idamnjanovic@13
|
182 %
|
idamnjanovic@13
|
183 % % Initialising Dictionary structure
|
idamnjanovic@13
|
184 % % Setting Dictionary structure fields (toolbox, name, param, D and time)
|
idamnjanovic@13
|
185 % % to zero values
|
idamnjanovic@13
|
186 %
|
idamnjanovic@13
|
187 % SMALL.DL(3)=SMALL_init_DL();
|
idamnjanovic@13
|
188 %
|
idamnjanovic@13
|
189 % % Defining fields needed for dictionary learning
|
idamnjanovic@13
|
190 %
|
idamnjanovic@13
|
191 % SMALL.DL(3).toolbox = 'SPAMS';
|
idamnjanovic@13
|
192 % SMALL.DL(3).name = 'mexTrainDL';
|
idamnjanovic@13
|
193 %
|
idamnjanovic@13
|
194 % % Type 'help mexTrainDL in MATLAB prompt for explanation of parameters.
|
idamnjanovic@13
|
195 %
|
idamnjanovic@13
|
196 % SMALL.DL(3).param=struct(...
|
idamnjanovic@13
|
197 % 'D', SMALL.Problem.initdict,...
|
idamnjanovic@13
|
198 % 'K', SMALL.Problem.p,...
|
idamnjanovic@13
|
199 % 'lambda', 2,...
|
idamnjanovic@13
|
200 % 'iter', 200,...
|
idamnjanovic@13
|
201 % 'mode', 3, ...
|
idamnjanovic@13
|
202 % 'modeD', 0);
|
idamnjanovic@13
|
203 %
|
idamnjanovic@13
|
204 % % Learn the dictionary
|
idamnjanovic@13
|
205 %
|
idamnjanovic@13
|
206 % SMALL.DL(3) = SMALL_learn(SMALL.Problem, SMALL.DL(3));
|
idamnjanovic@13
|
207 %
|
idamnjanovic@13
|
208 % % Set SMALL.Problem.A dictionary
|
idamnjanovic@13
|
209 % % (backward compatiblity with SPARCO: solver structure communicate
|
idamnjanovic@13
|
210 % % only with Problem structure, ie no direct communication between DL and
|
idamnjanovic@13
|
211 % % solver structures)
|
idamnjanovic@13
|
212 %
|
idamnjanovic@13
|
213 % SMALL.Problem.A = SMALL.DL(3).D;
|
idamnjanovic@13
|
214 %
|
idamnjanovic@13
|
215 %
|
idamnjanovic@13
|
216 % %%
|
idamnjanovic@13
|
217 % % Initialising solver structure
|
idamnjanovic@13
|
218 % % Setting solver structure fields (toolbox, name, param, solution,
|
idamnjanovic@13
|
219 % % reconstructed and time) to zero values
|
idamnjanovic@13
|
220 %
|
idamnjanovic@13
|
221 % SMALL.solver(3)=SMALL_init_solver;
|
idamnjanovic@13
|
222 %
|
idamnjanovic@13
|
223 % % Defining the parameters needed for denoising
|
idamnjanovic@13
|
224 %
|
idamnjanovic@13
|
225 % SMALL.solver(3).toolbox='ompbox';
|
idamnjanovic@13
|
226 % SMALL.solver(3).name='ompdenoise';
|
idamnjanovic@13
|
227 %
|
idamnjanovic@13
|
228 % % Denoising the image - SMALL_denoise function is similar to SMALL_solve,
|
idamnjanovic@13
|
229 % % but backward compatible with KSVD definition of denoising
|
idamnjanovic@13
|
230 %
|
idamnjanovic@13
|
231 % SMALL.solver(3)=SMALL_denoise(SMALL.Problem, SMALL.solver(3));
|
idamnjanovic@6
|
232
|
idamnjanovic@6
|
233 %%
|
idamnjanovic@6
|
234 % Plot results and save midi files
|
idamnjanovic@6
|
235
|
idamnjanovic@6
|
236 % show results %
|
idamnjanovic@6
|
237
|
idamnjanovic@6
|
238 SMALL_ImgDeNoiseResult(SMALL);
|