idamnjanovic@10
|
1 function data=generateImageDenoiseProblem(im, trainnum, blocksize, dictsize, sigma, gain, maxval, initdict);
|
idamnjanovic@10
|
2 %%% Generate Image Denoising Problem
|
idamnjanovic@10
|
3 %
|
idamnjanovic@21
|
4 % Centre for Digital Music, Queen Mary, University of London.
|
idamnjanovic@21
|
5 % This file copyright 2010 Ivan Damnjanovic.
|
idamnjanovic@21
|
6 %
|
idamnjanovic@21
|
7 % This program is free software; you can redistribute it and/or
|
idamnjanovic@21
|
8 % modify it under the terms of the GNU General Public License as
|
idamnjanovic@21
|
9 % published by the Free Software Foundation; either version 2 of the
|
idamnjanovic@21
|
10 % License, or (at your option) any later version. See the file
|
idamnjanovic@21
|
11 % COPYING included with this distribution for more information.
|
idamnjanovic@21
|
12 %
|
idamnjanovic@10
|
13 % generateImageDenoiseProblem is a part of the SMALLbox and generates
|
idamnjanovic@10
|
14 % a problem that can be used for comparison of Dictionary Learning/Sparse
|
idamnjanovic@10
|
15 % Representation techniques in image denoising scenario.
|
idamnjanovic@10
|
16 % The function takes as an input:
|
idamnjanovic@10
|
17 % - im - image matrix (if not present function promts user for an
|
idamnjanovic@10
|
18 % image file) ,
|
idamnjanovic@10
|
19 % - trainnum - number of training samples (default - 40000)
|
idamnjanovic@10
|
20 % - blocksize - block (patch) vertical/horizontal dimension (default 8),
|
idamnjanovic@10
|
21 % - dictsize - dictionary size (default - 256),
|
idamnjanovic@10
|
22 % - sigma - noise level (default - 20),
|
idamnjanovic@10
|
23 % - noise gain (default - 1.15),
|
idamnjanovic@10
|
24 % - maxval - maximum value (default - 255)
|
idamnjanovic@10
|
25 % - initdict - initial dictionary (default - 4x overcomlete dct)
|
idamnjanovic@10
|
26 %
|
idamnjanovic@10
|
27 % The output of the function is stucture with following fields:
|
idamnjanovic@10
|
28 % - name - name of the original image (if image is read inside of the
|
idamnjanovic@10
|
29 % function)
|
idamnjanovic@10
|
30 % - Original - original image matrix,
|
idamnjanovic@10
|
31 % - Noisy - image with added noise,
|
idamnjanovic@10
|
32 % - b - training patches,
|
idamnjanovic@10
|
33 % - m - size of training patches (default 64),
|
idamnjanovic@10
|
34 % - n - number of training patches,
|
idamnjanovic@10
|
35 % - p - number of dictionary elements to be learned,
|
idamnjanovic@10
|
36 % - blocksize - block size (default [8 8]),
|
idamnjanovic@10
|
37 % - sigma - noise level,
|
idamnjanovic@10
|
38 % - noise gain (default - 1.15),
|
idamnjanovic@10
|
39 % - maxval - maximum value (default - 255)
|
idamnjanovic@10
|
40 % - initdict - initial dictionary (default - 4x overcomlete dct)
|
idamnjanovic@10
|
41 % - signalDim - signal dimension (default - 2)
|
idamnjanovic@10
|
42 %
|
idamnjanovic@10
|
43 % Based on KSVD denoise demo by Ron Rubinstein
|
idamnjanovic@10
|
44 % See also KSVDDENOISEDEMO and KSVDDEMO.
|
idamnjanovic@10
|
45 % Ron Rubinstein
|
idamnjanovic@10
|
46 % Computer Science Department
|
idamnjanovic@10
|
47 % Technion, Haifa 32000 Israel
|
idamnjanovic@10
|
48 % ronrubin@cs
|
idamnjanovic@10
|
49 % August 2009
|
idamnjanovic@10
|
50 %%
|
idamnjanovic@10
|
51 disp(' ');
|
idamnjanovic@10
|
52 disp(' ********** Denoising Problem **********');
|
idamnjanovic@10
|
53 disp(' ');
|
idamnjanovic@10
|
54 disp(' This function reads an image, adds random Gaussian noise,');
|
idamnjanovic@10
|
55 disp(' that can be later denoised by using dictionary learning techniques.');
|
idamnjanovic@10
|
56 disp(' ');
|
idamnjanovic@10
|
57
|
idamnjanovic@10
|
58
|
idamnjanovic@10
|
59 %% prompt user for image %%
|
idamnjanovic@10
|
60 %ask for file name
|
idamnjanovic@10
|
61 FS=filesep;
|
idamnjanovic@10
|
62 TMPpath=pwd;
|
idamnjanovic@10
|
63 if ~ exist( 'im', 'var' ) || isempty(im)
|
idamnjanovic@10
|
64 [pathstr1, name, ext, versn] = fileparts(which('SMALLboxSetup.m'));
|
idamnjanovic@10
|
65 cd([pathstr1,FS,'data',FS,'images']);
|
idamnjanovic@17
|
66 [filename,pathname] = uigetfile({'*.png;'},'Select an image');
|
idamnjanovic@10
|
67 [pathstr, name, ext, versn] = fileparts(filename);
|
idamnjanovic@10
|
68 data.name=name;
|
idamnjanovic@10
|
69 im = imread(filename);
|
idamnjanovic@10
|
70 im = double(im);
|
idamnjanovic@10
|
71 end;
|
idamnjanovic@10
|
72 cd(TMPpath);
|
idamnjanovic@10
|
73
|
idamnjanovic@10
|
74 %% check input parameters %%
|
idamnjanovic@10
|
75
|
idamnjanovic@10
|
76 if ~ exist( 'blocksize', 'var' ) || isempty(blocksize),blocksize = 8;end
|
idamnjanovic@10
|
77 if ~ exist( 'dictsize', 'var' ) || isempty(dictsize), dictsize = 256;end
|
idamnjanovic@10
|
78 if ~ exist( 'trainnum', 'var' ) || isempty(trainnum),trainnum = 40000;end
|
idamnjanovic@10
|
79 if ~ exist( 'sigma', 'var' ) || isempty(sigma), sigma = 20; end
|
idamnjanovic@10
|
80 if ~ exist( 'gain', 'var' ) || isempty(gain), gain = 1.15; end
|
idamnjanovic@10
|
81 if ~ exist( 'maxval', 'var' ) || isempty(maxval), maxval = 255; end
|
idamnjanovic@10
|
82 if ~ exist( 'initdict', 'var' ) || isempty(initdict), initdict = 'odct'; end
|
idamnjanovic@10
|
83
|
idamnjanovic@10
|
84 %% generate noisy image %%
|
idamnjanovic@10
|
85
|
idamnjanovic@10
|
86 disp(' ');
|
idamnjanovic@10
|
87 disp('Generating noisy image...');
|
idamnjanovic@10
|
88
|
idamnjanovic@10
|
89 n = randn(size(im)) * sigma;
|
idamnjanovic@10
|
90 imnoise = im + n;
|
idamnjanovic@10
|
91
|
idamnjanovic@10
|
92 %% set parameters %%
|
idamnjanovic@10
|
93
|
idamnjanovic@10
|
94 x = imnoise;
|
idamnjanovic@10
|
95 p = ndims(x);
|
idamnjanovic@10
|
96
|
idamnjanovic@10
|
97 if (p==2 && any(size(x)==1) && length(blocksize)==1)
|
idamnjanovic@10
|
98 p = 1;
|
idamnjanovic@10
|
99 end
|
idamnjanovic@10
|
100
|
idamnjanovic@10
|
101 % blocksize %
|
idamnjanovic@10
|
102
|
idamnjanovic@10
|
103 if (numel(blocksize)==1)
|
idamnjanovic@10
|
104 blocksize = ones(1,p)*blocksize;
|
idamnjanovic@10
|
105 end
|
idamnjanovic@10
|
106
|
idamnjanovic@10
|
107 if (strcmpi(initdict,'odct'))
|
idamnjanovic@10
|
108 initdict = odctndict(blocksize,dictsize,p);
|
idamnjanovic@10
|
109 elseif (strcmpi(initdict,'data'))
|
idamnjanovic@10
|
110 clear initdict; % causes initialization using random examples
|
idamnjanovic@10
|
111 else
|
idamnjanovic@10
|
112 error('Invalid initial dictionary specified.');
|
idamnjanovic@10
|
113 end
|
idamnjanovic@10
|
114
|
idamnjanovic@10
|
115 if exist( 'initdict', 'var' )
|
idamnjanovic@10
|
116 initdict = initdict(:,1:dictsize);
|
idamnjanovic@10
|
117 end
|
idamnjanovic@10
|
118
|
idamnjanovic@10
|
119 %%%% create training data %%%
|
idamnjanovic@10
|
120
|
idamnjanovic@10
|
121 ids = cell(p,1);
|
idamnjanovic@10
|
122 if (p==1)
|
idamnjanovic@10
|
123 ids{1} = reggrid(length(x)-blocksize+1, trainnum, 'eqdist');
|
idamnjanovic@10
|
124 else
|
idamnjanovic@10
|
125 [ids{:}] = reggrid(size(x)-blocksize+1, trainnum, 'eqdist');
|
idamnjanovic@10
|
126 end
|
idamnjanovic@10
|
127 X = sampgrid(x,blocksize,ids{:});
|
idamnjanovic@10
|
128
|
idamnjanovic@10
|
129 % remove dc in blocks to conserve memory %
|
idamnjanovic@10
|
130
|
idamnjanovic@10
|
131 bsize = 2000;
|
idamnjanovic@10
|
132 for i = 1:bsize:size(X,2)
|
idamnjanovic@10
|
133 blockids = i : min(i+bsize-1,size(X,2));
|
idamnjanovic@10
|
134 X(:,blockids) = remove_dc(X(:,blockids),'columns');
|
idamnjanovic@10
|
135 end
|
idamnjanovic@10
|
136
|
idamnjanovic@10
|
137 %% output structure %%
|
idamnjanovic@10
|
138
|
idamnjanovic@10
|
139 data.Original = im;
|
idamnjanovic@10
|
140 data.Noisy = imnoise;
|
idamnjanovic@10
|
141 data.b = X;
|
idamnjanovic@10
|
142 data.m = size(X,1);
|
idamnjanovic@10
|
143 data.n = size(X,2);
|
idamnjanovic@10
|
144 data.p = dictsize;
|
idamnjanovic@10
|
145 data.blocksize=blocksize;
|
idamnjanovic@10
|
146 data.sigma = sigma;
|
idamnjanovic@10
|
147 data.gain = gain;
|
idamnjanovic@10
|
148 data.maxval = maxval;
|
idamnjanovic@10
|
149 data.initdict= initdict;
|
idamnjanovic@10
|
150 data.signalDim=2;
|
idamnjanovic@10
|
151
|
idamnjanovic@10
|
152 end %% end of function |