idamnjanovic@8
|
1 function DL = SMALL_learn(Problem,DL)
|
ivan@121
|
2 %% SMALL Dictionary Learning
|
ivan@121
|
3 %
|
ivan@121
|
4 % Function gets as input Problem and Dictionary Learning (DL) structures
|
ivan@121
|
5 % In Problem structure field b with the training set needs to be defined
|
ivan@121
|
6 % In DL fields with name of the toolbox and solver, and parameters file
|
ivan@121
|
7 % for particular dictionary learning technique needs to be present.
|
ivan@121
|
8 %
|
ivan@121
|
9 % Outputs are Learned dictionary and time spent as a part of DL structure
|
ivan@121
|
10
|
idamnjanovic@24
|
11 %
|
idamnjanovic@24
|
12 % Centre for Digital Music, Queen Mary, University of London.
|
idamnjanovic@24
|
13 % This file copyright 2009 Ivan Damnjanovic.
|
idamnjanovic@24
|
14 %
|
idamnjanovic@24
|
15 % This program is free software; you can redistribute it and/or
|
idamnjanovic@24
|
16 % modify it under the terms of the GNU General Public License as
|
idamnjanovic@24
|
17 % published by the Free Software Foundation; either version 2 of the
|
idamnjanovic@24
|
18 % License, or (at your option) any later version. See the file
|
idamnjanovic@24
|
19 % COPYING included with this distribution for more information.
|
idamnjanovic@8
|
20 %%
|
idamnjanovic@8
|
21
|
idamnjanovic@8
|
22 fprintf('\nStarting Dictionary Learning %s... \n', DL.name);
|
idamnjanovic@8
|
23 start=cputime;
|
idamnjanovic@36
|
24 tStart=tic;
|
idamnjanovic@8
|
25 if strcmpi(DL.toolbox,'KSVD')
|
idamnjanovic@8
|
26 param=DL.param;
|
idamnjanovic@8
|
27 param.data=Problem.b;
|
idamnjanovic@8
|
28
|
idamnjanovic@36
|
29 D = eval([DL.name,'(param)']);%, ''t'', 5);']);
|
idamnjanovic@8
|
30 elseif strcmpi(DL.toolbox,'KSVDS')
|
idamnjanovic@8
|
31 param=DL.param;
|
idamnjanovic@8
|
32 param.data=Problem.b;
|
idamnjanovic@8
|
33
|
idamnjanovic@8
|
34 D = eval([DL.name,'(param, ''t'', 5);']);
|
idamnjanovic@8
|
35 elseif strcmpi(DL.toolbox,'SPAMS')
|
idamnjanovic@8
|
36
|
idamnjanovic@8
|
37 X = Problem.b;
|
idamnjanovic@8
|
38 param=DL.param;
|
idamnjanovic@8
|
39
|
idamnjanovic@8
|
40 D = eval([DL.name,'(X, param);']);
|
idamnjanovic@8
|
41 % As some versions of SPAMS does not produce unit norm column
|
idamnjanovic@8
|
42 % dictionaries, we need to make sure that columns are normalised to
|
idamnjanovic@8
|
43 % unit lenght.
|
idamnjanovic@8
|
44
|
idamnjanovic@8
|
45 for i = 1: size(D,2)
|
idamnjanovic@8
|
46 D(:,i)=D(:,i)/norm(D(:,i));
|
idamnjanovic@8
|
47 end
|
idamnjanovic@36
|
48 elseif strcmpi(DL.toolbox,'SMALL')
|
idamnjanovic@8
|
49
|
idamnjanovic@36
|
50 X = Problem.b;
|
idamnjanovic@36
|
51 param=DL.param;
|
idamnjanovic@36
|
52
|
idamnjanovic@36
|
53 D = eval([DL.name,'(X, param);']);
|
idamnjanovic@36
|
54 % we need to make sure that columns are normalised to
|
idamnjanovic@36
|
55 % unit lenght.
|
idamnjanovic@36
|
56
|
idamnjanovic@36
|
57 for i = 1: size(D,2)
|
idamnjanovic@36
|
58 D(:,i)=D(:,i)/norm(D(:,i));
|
idamnjanovic@36
|
59 end
|
ivan@121
|
60
|
idamnjanovic@8
|
61 % To introduce new dictionary learning technique put the files in
|
idamnjanovic@8
|
62 % your Matlab path. Next, unique name <TolboxID> for your toolbox needs
|
idamnjanovic@8
|
63 % to be defined and also prefferd API for toolbox functions <Preffered_API>
|
idamnjanovic@8
|
64 %
|
idamnjanovic@8
|
65 % elseif strcmpi(DL.toolbox,'<ToolboxID>')
|
idamnjanovic@8
|
66 % % This is an example of API that can be used:
|
idamnjanovic@8
|
67 % % - get training set from Problem part of structure
|
idamnjanovic@8
|
68 % % - assign parameters defined in the main program
|
idamnjanovic@8
|
69 %
|
idamnjanovic@8
|
70 % X = Problem.b;
|
idamnjanovic@8
|
71 % param=DL.param;
|
idamnjanovic@8
|
72 %
|
idamnjanovic@8
|
73 % % - Evaluate the function (DL.name - defined in the main) with
|
idamnjanovic@8
|
74 % % parameters given above
|
idamnjanovic@8
|
75 %
|
idamnjanovic@8
|
76 % D = eval([DL.name,'(<Preffered_API>);']);
|
idamnjanovic@8
|
77
|
idamnjanovic@8
|
78 else
|
idamnjanovic@8
|
79 printf('\nToolbox has not been registered. Please change SMALL_learn file.\n');
|
idamnjanovic@8
|
80 return
|
idamnjanovic@8
|
81 end
|
idamnjanovic@8
|
82
|
idamnjanovic@8
|
83 %%
|
idamnjanovic@8
|
84 % Dictionary Learning time
|
idamnjanovic@36
|
85 tElapsed=toc(tStart);
|
idamnjanovic@8
|
86 DL.time = cputime - start;
|
maria@86
|
87 fprintf('\n%s finished task in %2f seconds (cpu time). \n', DL.name, DL.time);
|
maria@86
|
88 fprintf('\n%s finished task in %2f seconds (tic-toc time). \n', DL.name, tElapsed);
|
idamnjanovic@36
|
89 DL.time=tElapsed;
|
idamnjanovic@8
|
90 % If dictionary is given as a sparse matrix change it to full
|
idamnjanovic@8
|
91
|
idamnjanovic@8
|
92 DL.D = full(D);
|
idamnjanovic@8
|
93
|
idamnjanovic@8
|
94 end
|
idamnjanovic@8
|
95 |