annotate README.txt @ 217:8b3c71bb44eb luisf_dev

Removed "clear all" from example scripts (subs by "clear" instead)
author luisf <luis.figueira@eecs.qmul.ac.uk>
date Thu, 22 Mar 2012 14:41:04 +0000
parents a07585dff65c
children 51526e12cdea
rev   line source
idamnjanovic@1 1
idamnjanovic@29 2 SMALLbox Version 1.0 beta
idamnjanovic@1 3
idamnjanovic@29 4 11th May, 2010
idamnjanovic@29 5
idamnjanovic@29 6 Version 1.0 beta of SMALLbox is the release candidate that is distributed
idamnjanovic@29 7 for testing and bug fixing purposes. Please send all bugs, requests and suggestions to:
idamnjanovic@29 8
idamnjanovic@29 9 ivan.damnjanovic@elec.qmul.ac.uk
idamnjanovic@1 10
idamnjanovic@1 11
idamnjanovic@1 12 ---------------------------------------------------------------------------
idamnjanovic@1 13
idamnjanovic@29 14 Copyright (2010): Ivan Damnjanovic, Matthew Davies
idamnjanovic@29 15 Centre for Digital Music,
idamnjanovic@29 16 Queen Mary University of London
idamnjanovic@1 17
idamnjanovic@1 18 SMALLbox is distributed under the terms of the GNU General Public License 3
idamnjanovic@1 19
idamnjanovic@1 20 This program is free software: you can redistribute it and/or modify
idamnjanovic@1 21 it under the terms of the GNU General Public License as published by
idamnjanovic@1 22 the Free Software Foundation, either version 3 of the License, or
idamnjanovic@1 23 (at your option) any later version.
idamnjanovic@1 24
idamnjanovic@1 25 This program is distributed in the hope that it will be useful,
idamnjanovic@1 26 but WITHOUT ANY WARRANTY; without even the implied warranty of
idamnjanovic@1 27 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
idamnjanovic@1 28 GNU General Public License for more details.
idamnjanovic@1 29
idamnjanovic@1 30 You should have received a copy of the GNU General Public License
idamnjanovic@1 31 along with this program. If not, see <http://www.gnu.org/licenses/>.
idamnjanovic@1 32
idamnjanovic@1 33 ---------------------------------------------------------------------------
idamnjanovic@1 34
idamnjanovic@1 35 SMALLbox is a MATLAB Evaluation Framework for the EU FET-OPEN Project, no: 225913:
idamnjanovic@1 36 Sparse Models, Algorithms, and Learning for Large-scale data (SMALL).
idamnjanovic@1 37
idamnjanovic@1 38 The project team includes researchers from the following institutions:
idamnjanovic@1 39
idamnjanovic@1 40 INRIA: http://www.irisa.fr/metiss/gribonval/
idamnjanovic@1 41 University of Edinburgh: http://www.see.ed.ac.uk/~mdavies4/
idamnjanovic@1 42 Queen Mary, University of London: http://www.elec.qmul.ac.uk/people/markp/
idamnjanovic@1 43 EPFL: http://people.epfl.ch/pierre.vandergheynst
idamnjanovic@1 44 Technion: http://www.cs.technion.ac.il/~elad/
idamnjanovic@1 45
idamnjanovic@1 46 ---------------------------------------------------------------------------
idamnjanovic@1 47
idamnjanovic@29 48 will download and install the following existing toolboxes
idamnjanovic@1 49 related to Sparse Representations, Compressed Sensing and Dictionary Learning:
idamnjanovic@1 50
idamnjanovic@1 51
idamnjanovic@29 52 - SPARCO (v.1.2) - set of sparse representation problems[5]
idamnjanovic@29 53 - SparseLab (v.2.1) - set of sparse solvers [1]
idamnjanovic@29 54 - Sparsify (v.0.4) - set of greedy and hard thresholding algorithms [2]
idamnjanovic@29 55 - SPGL1 (v.1.7) - large-scale sparse reconstruction solver [3]
idamnjanovic@29 56 - GPSR (v.6.0) - Gradient projection for sparse reconstruction [4]
idamnjanovic@29 57 - KSVD-box (v.13) and OMP-box (v.10) - dictionary learning [6]
idamnjanovic@29 58 - KSVDS-box (v.11) and OMPS-box (v.1) - sparse dictionary learning [7].
idamnjanovic@1 59
idamnjanovic@1 60
idamnjanovic@1 61
idamnjanovic@1 62 IMPORTANT:
idamnjanovic@1 63 In order to use SparseLab please register at
idamnjanovic@1 64 http://cgi.stanford.edu/group/sparselab/cgi-bin/register.pl
idamnjanovic@1 65
idamnjanovic@1 66 IMPORTANT:
idamnjanovic@1 67 To successfully install all toolboxes you will need to have MEX setup to compile C files.
idamnjanovic@1 68 If this is not already setup, run "mex -setup" or type "help mex" in the MATLAB command prompt.
idamnjanovic@1 69
idamnjanovic@1 70 IMPORTANT:
idamnjanovic@1 71 Because the toolboxes are downloaded automatically, you must have an internet connection
idamnjanovic@1 72 to successfully install SMALLbox.
idamnjanovic@29 73
idamnjanovic@29 74 IMPORTANT:
idamnjanovic@29 75 If you are running Matlab on MAC OSX or Linux, you must start Matlab with the jvm enabled.
idamnjanovic@1 76 Not doing so, will prevent you being able to unzip the downloaded toolboxes.
idamnjanovic@1 77
idamnjanovic@1 78 To install the toolbox run the command "SMALLboxsetup" from the MATLAB command prompt.
idamnjanovic@1 79
idamnjanovic@29 80 Once installed, there are two optional demo functions that can be run:
idamnjanovic@29 81
idamnjanovic@29 82 Example test of solvers from different toolboxes on Sparco compressed sensing problems and
idamnjanovic@29 83 Example test of dictionary learning techniques on image denoising problems
idamnjanovic@29 84
idamnjanovic@29 85 Further examples can be found in {SMALLbox root}/examples directory
idamnjanovic@1 86
idamnjanovic@1 87 ---------------------------------------------------------------------------
idamnjanovic@1 88
idamnjanovic@1 89 For more information on the SMALL Project, please visit the following website:
idamnjanovic@1 90
idamnjanovic@29 91 http://small-project.eu
idamnjanovic@1 92
idamnjanovic@1 93
idamnjanovic@1 94 Contacts: ivan.damnjanovic@elec.qmul.ac.uk
idamnjanovic@1 95 matthew.davies@elec.qmul.ac.uk
idamnjanovic@1 96
idamnjanovic@1 97
idamnjanovic@1 98 This code is in experimental stage; any comments or bug reports are
idamnjanovic@29 99 very welcome. More information about using SMALLbox will be includied in release version
idamnjanovic@29 100 documenation file.
idamnjanovic@29 101
idamnjanovic@29 102 References:
idamnjanovic@29 103
idamnjanovic@29 104 1. Donoho, D., Stodden, V., Tsaig, Y.: Sparselab. 2007, http://sparselab.stanford.edu/
idamnjanovic@29 105 2. Blumensath, T., Davies, M. E.: Gradient pursuits.
idamnjanovic@29 106 In IEEE Transactions on Signal Processing, vol. 56, no. 6, pp. 2370–2382, June 2008.
idamnjanovic@29 107 3. Berg, E. v., Friedlander, M. P.: Probing the pareto frontier for basis pursuit solutions.
idamnjanovic@29 108 In SIAM Journal on Scientific Computing, vol. 31, no. 2, pp. 890–912, 2008.
idamnjanovic@29 109 4. Figueiredo, M. A. T., Nowak, R. D., Wright, S. J.: Gradient projection for sparse
idamnjanovic@29 110 reconstruction: Application to compressed sensing and other inverse problems. In Journal
idamnjanovic@29 111 of Selected Topics in Signal Processing:Special Issue on Convex Optimization for Signal Processing, December 2007.
idamnjanovic@29 112 5. Berg, E. v., Friedlander, M. P., Hennenfent, G., Herrmann, F., Saab, R., Yilmaz, O.: Sparco:
idamnjanovic@29 113 A testing framework for sparse reconstruction. In ACM Trans. on Mathematical Software, 35(4):1-16, February 2009.
idamnjanovic@29 114 6. Aharon, M., Elad, M., Bruckstein, A. M.: The K-SVD: An algorithm for designing of overcomplete
idamnjanovic@29 115 dictionaries for sparse representation. In IEEE Transactions on Signal Processing, vol. 54, no. 11, pp. 4311–4322, 2006.
idamnjanovic@29 116 7. Rubinstein, R., Zibulevsky, M. and Elad, M.: Double Sparsity: Learning Sparse Dictionaries
idamnjanovic@29 117 for Sparse Signal Approximation. In IEEE Transactions on Signal Processing, Vol. 58, No. 3, Pages 1553-1564, March 2010.