idamnjanovic@1
|
1
|
idamnjanovic@29
|
2 SMALLbox Version 1.0 beta
|
idamnjanovic@1
|
3
|
idamnjanovic@29
|
4 11th May, 2010
|
idamnjanovic@29
|
5
|
idamnjanovic@29
|
6 Version 1.0 beta of SMALLbox is the release candidate that is distributed
|
idamnjanovic@29
|
7 for testing and bug fixing purposes. Please send all bugs, requests and suggestions to:
|
idamnjanovic@29
|
8
|
idamnjanovic@29
|
9 ivan.damnjanovic@elec.qmul.ac.uk
|
idamnjanovic@1
|
10
|
idamnjanovic@1
|
11
|
idamnjanovic@1
|
12 ---------------------------------------------------------------------------
|
idamnjanovic@1
|
13
|
idamnjanovic@29
|
14 Copyright (2010): Ivan Damnjanovic, Matthew Davies
|
idamnjanovic@29
|
15 Centre for Digital Music,
|
idamnjanovic@29
|
16 Queen Mary University of London
|
idamnjanovic@1
|
17
|
idamnjanovic@1
|
18 SMALLbox is distributed under the terms of the GNU General Public License 3
|
idamnjanovic@1
|
19
|
idamnjanovic@1
|
20 This program is free software: you can redistribute it and/or modify
|
idamnjanovic@1
|
21 it under the terms of the GNU General Public License as published by
|
idamnjanovic@1
|
22 the Free Software Foundation, either version 3 of the License, or
|
idamnjanovic@1
|
23 (at your option) any later version.
|
idamnjanovic@1
|
24
|
idamnjanovic@1
|
25 This program is distributed in the hope that it will be useful,
|
idamnjanovic@1
|
26 but WITHOUT ANY WARRANTY; without even the implied warranty of
|
idamnjanovic@1
|
27 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
idamnjanovic@1
|
28 GNU General Public License for more details.
|
idamnjanovic@1
|
29
|
idamnjanovic@1
|
30 You should have received a copy of the GNU General Public License
|
idamnjanovic@1
|
31 along with this program. If not, see <http://www.gnu.org/licenses/>.
|
idamnjanovic@1
|
32
|
idamnjanovic@1
|
33 ---------------------------------------------------------------------------
|
idamnjanovic@1
|
34
|
idamnjanovic@1
|
35 SMALLbox is a MATLAB Evaluation Framework for the EU FET-OPEN Project, no: 225913:
|
idamnjanovic@1
|
36 Sparse Models, Algorithms, and Learning for Large-scale data (SMALL).
|
idamnjanovic@1
|
37
|
idamnjanovic@1
|
38 The project team includes researchers from the following institutions:
|
idamnjanovic@1
|
39
|
idamnjanovic@1
|
40 INRIA: http://www.irisa.fr/metiss/gribonval/
|
idamnjanovic@1
|
41 University of Edinburgh: http://www.see.ed.ac.uk/~mdavies4/
|
idamnjanovic@1
|
42 Queen Mary, University of London: http://www.elec.qmul.ac.uk/people/markp/
|
idamnjanovic@1
|
43 EPFL: http://people.epfl.ch/pierre.vandergheynst
|
idamnjanovic@1
|
44 Technion: http://www.cs.technion.ac.il/~elad/
|
idamnjanovic@1
|
45
|
idamnjanovic@1
|
46 ---------------------------------------------------------------------------
|
idamnjanovic@1
|
47
|
idamnjanovic@29
|
48 will download and install the following existing toolboxes
|
idamnjanovic@1
|
49 related to Sparse Representations, Compressed Sensing and Dictionary Learning:
|
idamnjanovic@1
|
50
|
idamnjanovic@1
|
51
|
idamnjanovic@29
|
52 - SPARCO (v.1.2) - set of sparse representation problems[5]
|
idamnjanovic@29
|
53 - SparseLab (v.2.1) - set of sparse solvers [1]
|
idamnjanovic@29
|
54 - Sparsify (v.0.4) - set of greedy and hard thresholding algorithms [2]
|
idamnjanovic@29
|
55 - SPGL1 (v.1.7) - large-scale sparse reconstruction solver [3]
|
idamnjanovic@29
|
56 - GPSR (v.6.0) - Gradient projection for sparse reconstruction [4]
|
idamnjanovic@29
|
57 - KSVD-box (v.13) and OMP-box (v.10) - dictionary learning [6]
|
idamnjanovic@29
|
58 - KSVDS-box (v.11) and OMPS-box (v.1) - sparse dictionary learning [7].
|
idamnjanovic@1
|
59
|
idamnjanovic@1
|
60
|
idamnjanovic@1
|
61
|
idamnjanovic@1
|
62 IMPORTANT:
|
idamnjanovic@1
|
63 In order to use SparseLab please register at
|
idamnjanovic@1
|
64 http://cgi.stanford.edu/group/sparselab/cgi-bin/register.pl
|
idamnjanovic@1
|
65
|
idamnjanovic@1
|
66 IMPORTANT:
|
idamnjanovic@1
|
67 To successfully install all toolboxes you will need to have MEX setup to compile C files.
|
idamnjanovic@1
|
68 If this is not already setup, run "mex -setup" or type "help mex" in the MATLAB command prompt.
|
idamnjanovic@1
|
69
|
idamnjanovic@1
|
70 IMPORTANT:
|
idamnjanovic@1
|
71 Because the toolboxes are downloaded automatically, you must have an internet connection
|
idamnjanovic@1
|
72 to successfully install SMALLbox.
|
idamnjanovic@29
|
73
|
idamnjanovic@29
|
74 IMPORTANT:
|
idamnjanovic@29
|
75 If you are running Matlab on MAC OSX or Linux, you must start Matlab with the jvm enabled.
|
idamnjanovic@1
|
76 Not doing so, will prevent you being able to unzip the downloaded toolboxes.
|
idamnjanovic@1
|
77
|
idamnjanovic@1
|
78 To install the toolbox run the command "SMALLboxsetup" from the MATLAB command prompt.
|
idamnjanovic@1
|
79
|
idamnjanovic@29
|
80 Once installed, there are two optional demo functions that can be run:
|
idamnjanovic@29
|
81
|
idamnjanovic@29
|
82 Example test of solvers from different toolboxes on Sparco compressed sensing problems and
|
idamnjanovic@29
|
83 Example test of dictionary learning techniques on image denoising problems
|
idamnjanovic@29
|
84
|
idamnjanovic@29
|
85 Further examples can be found in {SMALLbox root}/examples directory
|
idamnjanovic@1
|
86
|
idamnjanovic@1
|
87 ---------------------------------------------------------------------------
|
idamnjanovic@1
|
88
|
idamnjanovic@1
|
89 For more information on the SMALL Project, please visit the following website:
|
idamnjanovic@1
|
90
|
idamnjanovic@29
|
91 http://small-project.eu
|
idamnjanovic@1
|
92
|
idamnjanovic@1
|
93
|
idamnjanovic@1
|
94 Contacts: ivan.damnjanovic@elec.qmul.ac.uk
|
idamnjanovic@1
|
95 matthew.davies@elec.qmul.ac.uk
|
idamnjanovic@1
|
96
|
idamnjanovic@1
|
97
|
idamnjanovic@1
|
98 This code is in experimental stage; any comments or bug reports are
|
idamnjanovic@29
|
99 very welcome. More information about using SMALLbox will be includied in release version
|
idamnjanovic@29
|
100 documenation file.
|
idamnjanovic@29
|
101
|
idamnjanovic@29
|
102 References:
|
idamnjanovic@29
|
103
|
idamnjanovic@29
|
104 1. Donoho, D., Stodden, V., Tsaig, Y.: Sparselab. 2007, http://sparselab.stanford.edu/
|
idamnjanovic@29
|
105 2. Blumensath, T., Davies, M. E.: Gradient pursuits.
|
idamnjanovic@29
|
106 In IEEE Transactions on Signal Processing, vol. 56, no. 6, pp. 2370–2382, June 2008.
|
idamnjanovic@29
|
107 3. Berg, E. v., Friedlander, M. P.: Probing the pareto frontier for basis pursuit solutions.
|
idamnjanovic@29
|
108 In SIAM Journal on Scientific Computing, vol. 31, no. 2, pp. 890–912, 2008.
|
idamnjanovic@29
|
109 4. Figueiredo, M. A. T., Nowak, R. D., Wright, S. J.: Gradient projection for sparse
|
idamnjanovic@29
|
110 reconstruction: Application to compressed sensing and other inverse problems. In Journal
|
idamnjanovic@29
|
111 of Selected Topics in Signal Processing:Special Issue on Convex Optimization for Signal Processing, December 2007.
|
idamnjanovic@29
|
112 5. Berg, E. v., Friedlander, M. P., Hennenfent, G., Herrmann, F., Saab, R., Yilmaz, O.: Sparco:
|
idamnjanovic@29
|
113 A testing framework for sparse reconstruction. In ACM Trans. on Mathematical Software, 35(4):1-16, February 2009.
|
idamnjanovic@29
|
114 6. Aharon, M., Elad, M., Bruckstein, A. M.: The K-SVD: An algorithm for designing of overcomplete
|
idamnjanovic@29
|
115 dictionaries for sparse representation. In IEEE Transactions on Signal Processing, vol. 54, no. 11, pp. 4311–4322, 2006.
|
idamnjanovic@29
|
116 7. Rubinstein, R., Zibulevsky, M. and Elad, M.: Double Sparsity: Learning Sparse Dictionaries
|
idamnjanovic@29
|
117 for Sparse Signal Approximation. In IEEE Transactions on Signal Processing, Vol. 58, No. 3, Pages 1553-1564, March 2010.
|