ivan@153
|
1 %% Dictionary Learning for Image Denoising - KSVD vs Recursive Least Squares
|
ivan@153
|
2 %
|
ivan@153
|
3 % This file contains an example of how SMALLbox can be used to test different
|
ivan@153
|
4 % dictionary learning techniques in Image Denoising problem.
|
ivan@153
|
5 % It calls generateImageDenoiseProblem that will let you to choose image,
|
ivan@153
|
6 % add noise and use noisy image to generate training set for dictionary
|
ivan@153
|
7 % learning.
|
ivan@153
|
8 % Two dictionary learning techniques were compared:
|
ivan@153
|
9 % - KSVD - M. Elad, R. Rubinstein, and M. Zibulevsky, "Efficient
|
ivan@153
|
10 % Implementation of the K-SVD Algorithm using Batch Orthogonal
|
ivan@153
|
11 % Matching Pursuit", Technical Report - CS, Technion, April 2008.
|
ivan@153
|
12 % - RLS-DLA - Skretting, K.; Engan, K.; , "Recursive Least Squares
|
ivan@153
|
13 % Dictionary Learning Algorithm," Signal Processing, IEEE Transactions on,
|
ivan@153
|
14 % vol.58, no.4, pp.2121-2130, April 2010
|
ivan@153
|
15 %
|
ivan@153
|
16
|
ivan@153
|
17
|
ivan@153
|
18 % Centre for Digital Music, Queen Mary, University of London.
|
ivan@153
|
19 % This file copyright 2011 Ivan Damnjanovic.
|
ivan@153
|
20 %
|
ivan@153
|
21 % This program is free software; you can redistribute it and/or
|
ivan@153
|
22 % modify it under the terms of the GNU General Public License as
|
ivan@153
|
23 % published by the Free Software Foundation; either version 2 of the
|
ivan@153
|
24 % License, or (at your option) any later version. See the file
|
ivan@153
|
25 % COPYING included with this distribution for more information.
|
ivan@153
|
26 %
|
ivan@153
|
27 %%
|
ivan@153
|
28
|
ivan@153
|
29
|
ivan@153
|
30
|
ivan@153
|
31 % If you want to load the image outside of generateImageDenoiseProblem
|
ivan@153
|
32 % function uncomment following lines. This can be useful if you want to
|
ivan@153
|
33 % denoise more then one image for example.
|
ivan@153
|
34 % Here we are loading test_image.mat that contains structure with 5 images : lena,
|
ivan@153
|
35 % barbara,boat, house and peppers.
|
ivan@153
|
36 clear;
|
ivan@153
|
37 TMPpath=pwd;
|
ivan@153
|
38 FS=filesep;
|
ivan@153
|
39 [pathstr1, name, ext, versn] = fileparts(which('SMALLboxSetup.m'));
|
ivan@153
|
40 cd([pathstr1,FS,'data',FS,'images']);
|
ivan@153
|
41 load('test_image.mat');
|
ivan@153
|
42 cd(TMPpath);
|
ivan@153
|
43
|
ivan@153
|
44 % Deffining the noise levels that we want to test
|
ivan@153
|
45
|
ivan@153
|
46 noise_level=[10 20 25 50 100];
|
ivan@153
|
47
|
ivan@153
|
48 % Here we loop through different noise levels and images
|
ivan@153
|
49
|
ivan@153
|
50 for noise_ind=1:1
|
ivan@153
|
51 for im_num=1:1
|
ivan@153
|
52
|
ivan@153
|
53 % Defining Image Denoising Problem as Dictionary Learning
|
ivan@153
|
54 % Problem. As an input we set the number of training patches.
|
ivan@153
|
55
|
ivan@153
|
56 SMALL.Problem = generateImageDenoiseProblem(test_image(im_num).i, 40000, '',256, noise_level(noise_ind));
|
ivan@153
|
57 SMALL.Problem.name=int2str(im_num);
|
ivan@153
|
58
|
ivan@153
|
59 Edata=sqrt(prod(SMALL.Problem.blocksize)) * SMALL.Problem.sigma * SMALL.Problem.gain;
|
ivan@153
|
60 maxatoms = floor(prod(SMALL.Problem.blocksize)/2);
|
ivan@153
|
61
|
ivan@153
|
62 % results structure is to store all results
|
ivan@153
|
63
|
ivan@153
|
64 results(noise_ind,im_num).noisy_psnr=SMALL.Problem.noisy_psnr;
|
ivan@153
|
65
|
ivan@153
|
66 %%
|
ivan@153
|
67 % Use KSVD Dictionary Learning Algorithm to Learn overcomplete dictionary
|
ivan@153
|
68 % Ron Rubinstein implementation
|
ivan@153
|
69
|
ivan@153
|
70 % Initialising Dictionary structure
|
ivan@153
|
71 % Setting Dictionary structure fields (toolbox, name, param, D and time)
|
ivan@153
|
72 % to zero values
|
ivan@153
|
73
|
ivan@153
|
74 SMALL.DL(1)=SMALL_init_DL();
|
ivan@153
|
75
|
ivan@153
|
76 % Defining the parameters needed for dictionary learning
|
ivan@153
|
77
|
ivan@153
|
78 SMALL.DL(1).toolbox = 'KSVD';
|
ivan@153
|
79 SMALL.DL(1).name = 'ksvd';
|
ivan@153
|
80
|
ivan@153
|
81 % Defining the parameters for KSVD
|
ivan@153
|
82 % In this example we are learning 256 atoms in 20 iterations, so that
|
ivan@153
|
83 % every patch in the training set can be represented with target error in
|
ivan@153
|
84 % L2-norm (Edata)
|
ivan@153
|
85 % Type help ksvd in MATLAB prompt for more options.
|
ivan@153
|
86
|
ivan@153
|
87
|
ivan@153
|
88 SMALL.DL(1).param=struct(...
|
ivan@153
|
89 'Edata', Edata,...
|
ivan@153
|
90 'initdict', SMALL.Problem.initdict,...
|
ivan@153
|
91 'dictsize', SMALL.Problem.p,...
|
ivan@153
|
92 'exact', 1, ...
|
ivan@153
|
93 'iternum', 20,...
|
ivan@153
|
94 'memusage', 'high');
|
ivan@153
|
95
|
ivan@153
|
96 % Learn the dictionary
|
ivan@153
|
97
|
ivan@153
|
98 SMALL.DL(1) = SMALL_learn(SMALL.Problem, SMALL.DL(1));
|
ivan@153
|
99
|
ivan@153
|
100 % Set SMALL.Problem.A dictionary
|
ivan@153
|
101 % (backward compatiblity with SPARCO: solver structure communicate
|
ivan@153
|
102 % only with Problem structure, ie no direct communication between DL and
|
ivan@153
|
103 % solver structures)
|
ivan@153
|
104
|
ivan@153
|
105 SMALL.Problem.A = SMALL.DL(1).D;
|
ivan@153
|
106 SMALL.Problem.reconstruct = @(x) ImgDenoise_reconstruct(x, SMALL.Problem);
|
ivan@153
|
107
|
ivan@153
|
108 %%
|
ivan@153
|
109 % Initialising solver structure
|
ivan@153
|
110 % Setting solver structure fields (toolbox, name, param, solution,
|
ivan@153
|
111 % reconstructed and time) to zero values
|
ivan@153
|
112
|
ivan@153
|
113 SMALL.solver(1)=SMALL_init_solver;
|
ivan@153
|
114
|
ivan@153
|
115 % Defining the parameters needed for image denoising
|
ivan@153
|
116
|
ivan@153
|
117 SMALL.solver(1).toolbox='ompbox';
|
ivan@153
|
118 SMALL.solver(1).name='omp2';
|
ivan@153
|
119 SMALL.solver(1).param=struct(...
|
ivan@153
|
120 'epsilon',Edata,...
|
ivan@153
|
121 'maxatoms', maxatoms);
|
ivan@153
|
122
|
ivan@153
|
123 % Denoising the image - find the sparse solution in the learned
|
ivan@153
|
124 % dictionary for all patches in the image and the end it uses
|
ivan@153
|
125 % reconstruction function to reconstruct the patches and put them into a
|
ivan@153
|
126 % denoised image
|
ivan@153
|
127
|
ivan@153
|
128 SMALL.solver(1)=SMALL_solve(SMALL.Problem, SMALL.solver(1));
|
ivan@153
|
129
|
ivan@153
|
130 % Show PSNR after reconstruction
|
ivan@153
|
131
|
ivan@153
|
132 SMALL.solver(1).reconstructed.psnr
|
ivan@153
|
133
|
ivan@153
|
134 %%
|
ivan@153
|
135 % Use KSVD Dictionary Learning Algorithm to Learn overcomplete dictionary
|
ivan@153
|
136 % Boris Mailhe ksvd update implentation omp is the same as with Rubinstein
|
ivan@153
|
137 % implementation
|
ivan@153
|
138
|
ivan@153
|
139
|
ivan@153
|
140 % Initialising solver structure
|
ivan@153
|
141 % Setting solver structure fields (toolbox, name, param, solution,
|
ivan@153
|
142 % reconstructed and time) to zero values
|
ivan@153
|
143
|
ivan@153
|
144 SMALL.solver(2)=SMALL_init_solver;
|
ivan@153
|
145
|
ivan@153
|
146 % Defining the parameters needed for image denoising
|
ivan@153
|
147
|
ivan@153
|
148 SMALL.solver(2).toolbox='ompbox';
|
ivan@153
|
149 SMALL.solver(2).name='omp2';
|
ivan@153
|
150 SMALL.solver(2).param=struct(...
|
ivan@153
|
151 'epsilon',Edata,...
|
ivan@153
|
152 'maxatoms', maxatoms);
|
ivan@153
|
153
|
ivan@153
|
154 % Initialising Dictionary structure
|
ivan@153
|
155 % Setting Dictionary structure fields (toolbox, name, param, D and time)
|
ivan@153
|
156 % to zero values
|
ivan@153
|
157
|
ivan@153
|
158 SMALL.DL(2)=SMALL_init_DL('TwoStepDL', 'KSVD', '', 1);
|
ivan@153
|
159
|
ivan@153
|
160
|
ivan@153
|
161 % Defining the parameters for KSVD
|
ivan@153
|
162 % In this example we are learning 256 atoms in 20 iterations, so that
|
ivan@153
|
163 % every patch in the training set can be represented with target error in
|
ivan@153
|
164 % L2-norm (EData)
|
ivan@153
|
165 % Type help ksvd in MATLAB prompt for more options.
|
ivan@153
|
166
|
ivan@153
|
167
|
ivan@153
|
168 SMALL.DL(2).param=struct(...
|
ivan@153
|
169 'solver', SMALL.solver(2),...
|
ivan@153
|
170 'initdict', SMALL.Problem.initdict,...
|
ivan@153
|
171 'dictsize', SMALL.Problem.p,...
|
ivan@153
|
172 'iternum', 20,...
|
ivan@153
|
173 'show_dict', 1);
|
ivan@153
|
174
|
ivan@153
|
175 % Learn the dictionary
|
ivan@153
|
176
|
ivan@153
|
177 SMALL.DL(2) = SMALL_learn(SMALL.Problem, SMALL.DL(2));
|
ivan@153
|
178
|
ivan@153
|
179 % Set SMALL.Problem.A dictionary
|
ivan@153
|
180 % (backward compatiblity with SPARCO: solver structure communicate
|
ivan@153
|
181 % only with Problem structure, ie no direct communication between DL and
|
ivan@153
|
182 % solver structures)
|
ivan@153
|
183
|
ivan@153
|
184 SMALL.Problem.A = SMALL.DL(2).D;
|
ivan@153
|
185 SMALL.Problem.reconstruct = @(x) ImgDenoise_reconstruct(x, SMALL.Problem);
|
ivan@153
|
186
|
ivan@153
|
187 % Denoising the image - find the sparse solution in the learned
|
ivan@153
|
188 % dictionary for all patches in the image and the end it uses
|
ivan@153
|
189 % reconstruction function to reconstruct the patches and put them into a
|
ivan@153
|
190 % denoised image
|
ivan@153
|
191
|
ivan@153
|
192 SMALL.solver(2)=SMALL_solve(SMALL.Problem, SMALL.solver(2));
|
ivan@153
|
193
|
ivan@153
|
194
|
ivan@153
|
195 %% show results %%
|
ivan@153
|
196
|
ivan@153
|
197 SMALL_ImgDeNoiseResult(SMALL);
|
ivan@153
|
198
|
ivan@153
|
199 clear SMALL;
|
ivan@153
|
200 end
|
ivan@153
|
201 end
|
ivan@153
|
202
|