annotate toolboxes/AudioInpaintingToolbox/Solvers/inpaintFrame_consOMP.m @ 173:7426503fc4d1 danieleb

added ramirez_dl dictionary learning case
author Daniele Barchiesi <daniele.barchiesi@eecs.qmul.ac.uk>
date Thu, 17 Nov 2011 11:15:02 +0000
parents 56d719a5fd31
children
rev   line source
ivan@138 1 function y = inpaintFrame_consOMP(problemData,param)
ivan@138 2 % Inpainting method based on OMP with a constraint
ivan@138 3 % on the amplitude of the reconstructed samples an optional constraint
ivan@138 4 % on the maximum value of the clipped samples
ivan@138 5 %
ivan@138 6 % Usage: y = inpaintFrame_consOMP(problemData,param)
ivan@138 7 %
ivan@138 8 %
ivan@138 9 % Inputs:
ivan@138 10 % - problemData.x: observed signal to be inpainted
ivan@138 11 % - problemData.Imiss: Indices of clean samples
ivan@138 12 % - param.D - the dictionary matrix (optional if param.D_fun is set)
ivan@138 13 % - param.D_fun - a function handle that generates the dictionary
ivan@138 14 % matrix param.D if param.D is not given. See, e.g., DCT_Dictionary.m and Gabor_Dictionary.m
ivan@138 15 % - param.wa - Analysis window
ivan@138 16 % - param.Upper_Limit - if present and non-empty this fiels
ivan@138 17 % indicates that an upper limit constraint is active and its
ivan@138 18 % integer value is such that
ivan@138 19 %
ivan@138 20 % Outputs:
ivan@138 21 % - y: estimated frame
ivan@138 22 %
ivan@138 23 % Note that the CVX library is needed.
ivan@138 24 %
ivan@138 25 % -------------------
ivan@138 26 %
ivan@138 27 % Audio Inpainting toolbox
ivan@138 28 % Date: June 28, 2011
ivan@138 29 % By Valentin Emiya, Amir Adler, Michael Elad, Maria Jafari
ivan@138 30 % This code is distributed under the terms of the GNU Public License version 3 (http://www.gnu.org/licenses/gpl.txt).
ivan@138 31 % ========================================================
ivan@138 32
ivan@138 33 %% Load data and parameters
ivan@138 34
ivan@138 35 x = problemData.x;
ivan@138 36 IObs = find(~problemData.IMiss);
ivan@138 37 p.N = length(x);
ivan@138 38 E2 = param.OMPerr^2;
ivan@138 39 E2M=E2*length(IObs);
ivan@138 40 wa = param.wa(param.N);
ivan@138 41
ivan@138 42 % build the dictionary matrix if only the dictionary generation function is given
ivan@138 43 if ~isfield(param,'D')
ivan@138 44 param.D = param.D_fun(param);
ivan@138 45 end
ivan@138 46
ivan@138 47
ivan@138 48 % clipping level detection
ivan@138 49 clippingLevelEst = max(abs(x(:)./wa(:)));
ivan@138 50
ivan@138 51 IMiss = true(length(x),1);
ivan@138 52 IMiss(IObs) = false;
ivan@138 53 IMissPos = find(x>=0 & IMiss);
ivan@138 54 IMissNeg = find(x<0 & IMiss);
ivan@138 55
ivan@138 56 DictPos=param.D(IMissPos,:);
ivan@138 57 DictNeg=param.D(IMissNeg,:);
ivan@138 58
ivan@138 59 % Clipping level: take the analysis window into account
ivan@138 60 wa_pos = wa(IMissPos);
ivan@138 61 wa_neg = wa(IMissNeg);
ivan@138 62 b_ineq_pos = wa_pos(:)*clippingLevelEst;
ivan@138 63 b_ineq_neg = -wa_neg(:)*clippingLevelEst;
ivan@138 64 if isfield(param,'Upper_Limit') && ~isempty(param.Upper_Limit)
ivan@138 65 b_ineq_pos_upper_limit = wa_pos(:)*param.Upper_Limit*clippingLevelEst;
ivan@138 66 b_ineq_neg_upper_limit = -wa_neg(:)*param.Upper_Limit*clippingLevelEst;
ivan@138 67 else
ivan@138 68 b_ineq_pos_upper_limit = Inf;
ivan@138 69 b_ineq_neg_upper_limit = -Inf;
ivan@138 70 end
ivan@138 71
ivan@138 72 %%
ivan@138 73 Dict=param.D(IObs,:);
ivan@138 74 W=1./sqrt(diag(Dict'*Dict));
ivan@138 75 Dict=Dict*diag(W);
ivan@138 76 xObs=x(IObs);
ivan@138 77
ivan@138 78 residual=xObs;
ivan@138 79 maxNumCoef = param.sparsityDegree;
ivan@138 80 indx = [];
ivan@138 81 currResNorm2 = E2M*2; % set a value above the threshold in order to have/force at least one loop executed
ivan@138 82 j = 0;
ivan@138 83 while currResNorm2>E2M && j < maxNumCoef,
ivan@138 84 j = j+1;
ivan@138 85 proj=Dict'*residual;
ivan@138 86 [dum pos] = max(abs(proj));
ivan@138 87 indx(j)=pos;
ivan@138 88 a=pinv(Dict(:,indx(1:j)))*xObs;
ivan@138 89 residual=xObs-Dict(:,indx(1:j))*a;
ivan@138 90 currResNorm2=sum(residual.^2);
ivan@138 91 end;
ivan@138 92
ivan@138 93
ivan@138 94 if isinf(b_ineq_pos_upper_limit)
ivan@138 95 %% CVX code
ivan@138 96 cvx_begin
ivan@138 97 cvx_quiet(true)
ivan@138 98 variable a(j)
ivan@138 99 %minimize( sum(square(xObs-Dict*a)))
ivan@138 100 minimize(norm(Dict(:,indx)*a-xObs))
ivan@138 101 subject to
ivan@138 102 DictPos(:,indx)*(W(indx).*a) >= b_ineq_pos
ivan@138 103 DictNeg(:,indx)*(W(indx).*a) <= b_ineq_neg
ivan@138 104 cvx_end
ivan@138 105 if cvx_optval>1e3
ivan@138 106 cvx_begin
ivan@138 107 cvx_quiet(true)
ivan@138 108 variable a(j)
ivan@138 109 minimize(norm(Dict(:,indx)*a-xObs))
ivan@138 110 cvx_end
ivan@138 111 end
ivan@138 112 else
ivan@138 113 %% CVX code
ivan@138 114 cvx_begin
ivan@138 115 cvx_quiet(true)
ivan@138 116 variable a(j)
ivan@138 117 %minimize( sum(square(xObs-Dict*a)))
ivan@138 118 minimize(norm(Dict(:,indx)*a-xObs))
ivan@138 119 subject to
ivan@138 120 DictPos(:,indx)*(W(indx).*a) >= b_ineq_pos
ivan@138 121 DictNeg(:,indx)*(W(indx).*a) <= b_ineq_neg
ivan@138 122 DictPos(:,indx)*(W(indx).*a) <= b_ineq_pos_upper_limit
ivan@138 123 DictNeg(:,indx)*(W(indx).*a) >= b_ineq_neg_upper_limit
ivan@138 124 cvx_end
ivan@138 125 if cvx_optval>1e3
ivan@138 126 cvx_begin
ivan@138 127 cvx_quiet(true)
ivan@138 128 variable a(j)
ivan@138 129 minimize(norm(Dict(:,indx)*a-xObs))
ivan@138 130 cvx_end
ivan@138 131 end
ivan@138 132 end
ivan@138 133
ivan@138 134 %% Frame Reconstruction
ivan@138 135 indx(length(a)+1:end) = [];
ivan@138 136
ivan@138 137 Coeff = sparse(size(param.D,2),1);
ivan@138 138 if (~isempty(indx))
ivan@138 139 Coeff(indx) = a;
ivan@138 140 Coeff = W.*Coeff;
ivan@138 141 end
ivan@138 142 y = param.D*Coeff;
ivan@138 143
ivan@138 144 return