annotate solvers/SMALL_ompGabor/omp2Gabor.m @ 173:7426503fc4d1 danieleb

added ramirez_dl dictionary learning case
author Daniele Barchiesi <daniele.barchiesi@eecs.qmul.ac.uk>
date Thu, 17 Nov 2011 11:15:02 +0000
parents 31d2864dfdd4
children
rev   line source
ivan@140 1 function gamma = omp2Gabor(varargin)
ivan@140 2 %% omp2Gabor Error-constrained Orthogonal Matching Pursuit.
ivan@140 3 %
ivan@140 4 % This file is part of SMALLbox [2] and it is adaptation of Ron
ivan@140 5 % Rubenstein omp solver [1] for Gabor dictionary as defined in
ivan@140 6 % Audio Inpainting by Adler et al [3]. The dictionary is presented as
ivan@140 7 % DCT+DST and solver pics two atoms per iteration (given the frequency one
ivan@140 8 % from DCT and one from DST). For more information look in [3].
ivan@140 9 %
ivan@140 10 % GAMMA = OMP2(D,X,G,EPSILON) solves the optimization problem
ivan@140 11 %
ivan@140 12 % min |GAMMA|_0 s.t. |X - D*GAMMA|_2 <= EPSILON
ivan@140 13 % gamma
ivan@140 14 %
ivan@140 15 % for each of the signals in X, using Batch Orthogonal Matching Pursuit.
ivan@140 16 % Here, D is a dictionary with normalized columns, X is a matrix
ivan@140 17 % containing column signals, EPSILON is the error target for each signal,
ivan@140 18 % and G is the Gramm matrix D'*D. The output GAMMA is a matrix containing
ivan@140 19 % the sparse representations as its columns.
ivan@140 20 %
ivan@140 21 % GAMMA = OMP2(D,X,[],EPSILON) performs the same operation, but without
ivan@140 22 % the matrix G, using OMP-Cholesky. This call produces the same output as
ivan@140 23 % Batch-OMP, but is significantly slower. Using this syntax is only
ivan@140 24 % recommended when available memory is too small to store G.
ivan@140 25 %
ivan@140 26 % GAMMA = OMP2(DtX,XtX,G,EPSILON) is the fastest implementation of OMP2,
ivan@140 27 % but also requires the most memory. Here, DtX stores the projections
ivan@140 28 % D'*X, and XtX is a row vector containing the squared norms of the
ivan@140 29 % signals, sum(X.*X). In this case Batch-OMP is used, but without having
ivan@140 30 % to compute D'*X and XtX in advance, which slightly improves runtime.
ivan@140 31 % Note that in general, the call
ivan@140 32 %
ivan@140 33 % GAMMA = OMP2(D'*X, sum(X.*X), G, EPSILON);
ivan@140 34 %
ivan@140 35 % will be faster than the call
ivan@140 36 %
ivan@140 37 % GAMMA = OMP2(D,X,G,EPSILON);
ivan@140 38 %
ivan@140 39 % due to optimized matrix multiplications in Matlab. However, when the
ivan@140 40 % entire matrix D'*X cannot be stored in memory, one of the other two
ivan@140 41 % versions can be used. Both compute D'*X for just one signal at a time,
ivan@140 42 % and thus require much less memory.
ivan@140 43 %
ivan@140 44 % GAMMA = OMP2(...,PARAM1,VAL1,PARAM2,VAL2,...) specifies additional
ivan@140 45 % parameters for OMP2. Available parameters are:
ivan@140 46 %
ivan@140 47 % 'gammamode' - Specifies the representation mode for GAMMA. Can be
ivan@140 48 % either 'full' or 'sparse', corresponding to a full or
ivan@140 49 % sparse matrix, respectively. By default, GAMMA is
ivan@140 50 % returned as a sparse matrix.
ivan@140 51 % 'maxatoms' - Limits the number of atoms in the representation of each
ivan@140 52 % signal. If specified, the number of atoms in each
ivan@140 53 % representation does not exceed this number, even if the
ivan@140 54 % error target is not met. Specifying maxatoms<0 implies
ivan@140 55 % no limit (default).
ivan@140 56 % 'messages' - Specifies whether progress messages should be displayed.
ivan@140 57 % When positive, this is the number of seconds between
ivan@140 58 % status prints. When negative, indicates that no messages
ivan@140 59 % should be displayed (this is the default).
ivan@140 60 % 'checkdict' - Specifies whether dictionary normalization should be
ivan@140 61 % verified. When set to 'on' (default) the dictionary
ivan@140 62 % atoms are verified to be of unit L2-norm. Setting this
ivan@140 63 % parameter to 'off' disables verification and accelerates
ivan@140 64 % function performance. Note that an unnormalized
ivan@140 65 % dictionary will produce invalid results.
ivan@140 66 % 'profile' - Can be either 'on' or 'off'. When 'on', profiling
ivan@140 67 % information is displayed at the end of the funciton
ivan@140 68 % execution.
ivan@140 69 %
ivan@140 70 %
ivan@140 71 % Summary of OMP2 versions:
ivan@140 72 %
ivan@140 73 % version | speed | memory
ivan@140 74 % -------------------------------------------------------------
ivan@140 75 % OMP2(DtX,XtX,G,EPSILON) | very fast | very large
ivan@140 76 % OMP2(D,X,G,EPSILON) | fast | moderate
ivan@140 77 % OMP2(D,X,[],EPSILON) | very slow | small
ivan@140 78 % -------------------------------------------------------------
ivan@140 79 %
ivan@140 80 %
ivan@140 81 % References:
ivan@140 82 % [1] M. Elad, R. Rubinstein, and M. Zibulevsky, "Efficient Implementation
ivan@140 83 % of the K-SVD Algorithm using Batch Orthogonal Matching Pursuit",
ivan@140 84 % Technical Report - CS, Technion, April 2008.
ivan@140 85 %
ivan@140 86 % See also OMP.
ivan@140 87
ivan@140 88
ivan@140 89 % Ron Rubinstein
ivan@140 90 % Computer Science Department
ivan@140 91 % Technion, Haifa 32000 Israel
ivan@140 92 % ronrubin@cs
ivan@140 93 %
ivan@140 94 % April 2009
ivan@140 95
ivan@140 96 %
ivan@140 97 % Centre for Digital Music, Queen Mary, University of London.
ivan@140 98 % This file copyright 2011 Ivan Damnjanovic.
ivan@140 99 %
ivan@140 100 % This program is free software; you can redistribute it and/or
ivan@140 101 % modify it under the terms of the GNU General Public License as
ivan@140 102 % published by the Free Software Foundation; either version 2 of the
ivan@140 103 % License, or (at your option) any later version. See the file
ivan@140 104 % COPYING included with this distribution for more information.
ivan@140 105 %%
ivan@140 106
ivan@140 107 % default options
ivan@140 108
ivan@140 109 sparse_gamma = 1;
ivan@140 110 msgdelta = -1;
ivan@140 111 maxatoms = -1;
ivan@140 112 checkdict = 1;
ivan@140 113 profile = 0;
ivan@140 114
ivan@140 115
ivan@140 116 % determine number of parameters
ivan@140 117
ivan@140 118 paramnum = 1;
ivan@140 119 while (paramnum<=nargin && ~ischar(varargin{paramnum}))
ivan@140 120 paramnum = paramnum+1;
ivan@140 121 end
ivan@140 122 paramnum = paramnum-1;
ivan@140 123
ivan@140 124
ivan@140 125 % parse options
ivan@140 126
ivan@140 127 for i = paramnum+1:2:length(varargin)
ivan@140 128 paramname = varargin{i};
ivan@140 129 paramval = varargin{i+1};
ivan@140 130
ivan@140 131 switch lower(paramname)
ivan@140 132
ivan@140 133 case 'gammamode'
ivan@140 134 if (strcmpi(paramval,'sparse'))
ivan@140 135 sparse_gamma = 1;
ivan@140 136 elseif (strcmpi(paramval,'full'))
ivan@140 137 sparse_gamma = 0;
ivan@140 138 else
ivan@140 139 error('Invalid GAMMA mode');
ivan@140 140 end
ivan@140 141
ivan@140 142 case 'maxatoms'
ivan@140 143 maxatoms = paramval;
ivan@140 144
ivan@140 145 case 'messages'
ivan@140 146 msgdelta = paramval;
ivan@140 147
ivan@140 148 case 'checkdict'
ivan@140 149 if (strcmpi(paramval,'on'))
ivan@140 150 checkdict = 1;
ivan@140 151 elseif (strcmpi(paramval,'off'))
ivan@140 152 checkdict = 0;
ivan@140 153 else
ivan@140 154 error('Invalid checkdict option');
ivan@140 155 end
ivan@140 156
ivan@140 157 case 'profile'
ivan@140 158 if (strcmpi(paramval,'on'))
ivan@140 159 profile = 1;
ivan@140 160 elseif (strcmpi(paramval,'off'))
ivan@140 161 profile = 0;
ivan@140 162 else
ivan@140 163 error('Invalid profile mode');
ivan@140 164 end
ivan@140 165
ivan@140 166 otherwise
ivan@140 167 error(['Unknown option: ' paramname]);
ivan@140 168 end
ivan@140 169
ivan@140 170 end
ivan@140 171
ivan@140 172
ivan@140 173 % determine call type
ivan@140 174
ivan@140 175 if (paramnum==4)
ivan@140 176
ivan@140 177 n1 = size(varargin{1},1);
ivan@140 178 n2 = size(varargin{2},1);
ivan@140 179 n3 = size(varargin{3},1);
ivan@140 180
ivan@140 181 if ( (n1>1 && n2==1) || (n1==1 && n2==1 && n3==1) ) % DtX,XtX,G,EPSILON
ivan@140 182
ivan@140 183 DtX = varargin{1};
ivan@140 184 XtX = varargin{2};
ivan@140 185 G = varargin{3};
ivan@140 186 epsilon = varargin{4};
ivan@140 187 D = [];
ivan@140 188 X = [];
ivan@140 189
ivan@140 190 else % D,X,G,EPSILON
ivan@140 191
ivan@140 192 D = varargin{1};
ivan@140 193 X = varargin{2};
ivan@140 194 G = varargin{3};
ivan@140 195 epsilon = varargin{4};
ivan@140 196 DtX = [];
ivan@140 197 XtX = [];
ivan@140 198
ivan@140 199 end
ivan@140 200
ivan@140 201 else
ivan@140 202 error('Invalid number of parameters');
ivan@140 203 end
ivan@140 204
ivan@140 205 G=[];
ivan@140 206
ivan@140 207 % verify dictionary normalization
ivan@140 208
ivan@140 209 if (checkdict)
ivan@140 210 if (isempty(G))
ivan@140 211 atomnorms = sum(D.*D);
ivan@140 212 else
ivan@140 213 atomnorms = diag(G);
ivan@140 214 end
ivan@140 215 if (any(abs(atomnorms-1) > 1e-2))
ivan@140 216 error('Dictionary columns must be normalized to unit length');
ivan@140 217 end
ivan@140 218 end
ivan@140 219
ivan@140 220
ivan@140 221 % omp
ivan@140 222
ivan@140 223 gamma = omp2mexGabor(D,X,DtX,XtX,G,epsilon,sparse_gamma,msgdelta,maxatoms,profile);