ivan@154
|
1 function [x_hat, numiter, x_path] = zero_ALPS(y, Phi, K, params)
|
ivan@154
|
2 % =========================================================================
|
ivan@154
|
3 % 0-ALPS(#) algorithm - Beta Version
|
ivan@154
|
4 % =========================================================================
|
ivan@154
|
5 % Algebraic Pursuit (ALPS) algorithm with memoryless acceleration.
|
ivan@154
|
6 %
|
ivan@154
|
7 % Detailed discussion on the algorithm can be found in
|
ivan@154
|
8 % [1] "On Accelerated Hard Thresholding Methods for Sparse Approximation", written
|
ivan@154
|
9 % by Volkan Cevher, Technical Report, 2011.
|
ivan@154
|
10 % =========================================================================
|
ivan@154
|
11 % INPUT ARGUMENTS:
|
ivan@154
|
12 % y M x 1 undersampled measurement vector.
|
ivan@154
|
13 % Phi M x N regression matrix.
|
ivan@154
|
14 % K Sparsity of underlying vector x* or desired
|
ivan@154
|
15 % sparsity of solution.
|
ivan@154
|
16 % params Structure of parameters. These are:
|
ivan@154
|
17 %
|
ivan@154
|
18 % tol,... Early stopping tolerance. Default value: tol =
|
ivan@154
|
19 % 1-e5
|
ivan@154
|
20 % ALPSiters,... Maximum number of algorithm iterations. Default
|
ivan@154
|
21 % value: 300.
|
ivan@154
|
22 % mode, ... According to [1], possible values are
|
ivan@154
|
23 % [0,1,2,4,5,6]. This value comes from the binary
|
ivan@154
|
24 % representation of the parameters:
|
ivan@154
|
25 % (solveNewtob, gradientDescentx, solveNewtonx),
|
ivan@154
|
26 % which are explained next. Default value = 0.
|
ivan@154
|
27 % solveNewtonb,... If solveNewtonb == 1: Corresponds to solving a
|
ivan@154
|
28 % Newton system restricted to a sparse support.
|
ivan@154
|
29 % It is implemented via conjugate gradients.
|
ivan@154
|
30 % If solveNewtonb == 0: Step size selection as described
|
ivan@154
|
31 % in eqs. (12) and (13) in [1].
|
ivan@154
|
32 % Default value: solveNewtonb = 0.
|
ivan@154
|
33 % gradientDescentx,... If gradientDescentx == 1: single gradient
|
ivan@154
|
34 % update of x_{i+1} restricted ot its support with
|
ivan@154
|
35 % line search. Default value: gradientDescentx =
|
ivan@154
|
36 % 1.
|
ivan@154
|
37 % solveNewtonx,... If solveNewtonx == 1: Akin to Hard Thresholding Pursuit
|
ivan@154
|
38 % (c.f. Simon Foucart, "Hard Thresholding Pursuit,"
|
ivan@154
|
39 % preprint, 2010). Default vale: solveNewtonx = 0
|
ivan@154
|
40 % mu,... Variable that controls the step size selection.
|
ivan@154
|
41 % When mu = 0, step size is computed adaptively
|
ivan@154
|
42 % per iteration. Default value: mu = 0.
|
ivan@154
|
43 % cg_maxiter,... Maximum iterations for Conjugate-Gradients method.
|
ivan@154
|
44 % cg_tol Tolerance variable for Conjugate-Gradients method.
|
ivan@154
|
45 % =========================================================================
|
ivan@154
|
46 % OUTPUT ARGUMENTS:
|
ivan@154
|
47 % x_hat N x 1 recovered K-sparse vector.
|
ivan@154
|
48 % numiter Number of iterations executed.
|
ivan@154
|
49 % x_path Keeps a series of computed N x 1 K-sparse vectors
|
ivan@154
|
50 % until the end of the iterative process.
|
ivan@154
|
51 % =========================================================================
|
ivan@154
|
52 % 01/04/2011, by Anastasios Kyrillidis. anastasios.kyrillidis@epfl.ch, EPFL.
|
ivan@154
|
53 % =========================================================================
|
ivan@154
|
54 % cgsolve.m is written by Justin Romberg, Caltech, Oct. 2005.
|
ivan@154
|
55 % Email: jrom@acm.caltech.edu
|
ivan@154
|
56 % =========================================================================
|
ivan@154
|
57 % This work was supported in part by the European Commission under Grant
|
ivan@154
|
58 % MIRG-268398 and DARPA KeCoM program #11-DARPA-1055. VC also would like
|
ivan@154
|
59 % to acknowledge Rice University for his Faculty Fellowship.
|
ivan@154
|
60 % =========================================================================
|
ivan@154
|
61
|
ivan@154
|
62 [tmpArg, N] = size(Phi);
|
ivan@154
|
63
|
ivan@154
|
64 %% Initialize transpose of measurement matrix
|
ivan@154
|
65
|
ivan@154
|
66 Phi_t = Phi';
|
ivan@154
|
67
|
ivan@154
|
68 %% Initialize to zero vector
|
ivan@154
|
69 x_cur = zeros(N,1);
|
ivan@154
|
70 X_i = [];
|
ivan@154
|
71
|
ivan@154
|
72 x_path = zeros(N, params.ALPSiters);
|
ivan@154
|
73
|
ivan@154
|
74 %% CG params
|
ivan@154
|
75 if (params.mode == 1 || params.mode == 4 || params.mode == 5 || params.mode == 6)
|
ivan@154
|
76 cg_verbose = 0;
|
ivan@154
|
77 cg_A = Phi_t*Phi;
|
ivan@154
|
78 cg_b = Phi_t*y;
|
ivan@154
|
79 end;
|
ivan@154
|
80
|
ivan@154
|
81 %% Determine step size selection strategy
|
ivan@154
|
82 function_mu = 0;
|
ivan@154
|
83 adaptive_mu = 0;
|
ivan@154
|
84
|
ivan@154
|
85 if (isa(params.mu,'float'))
|
ivan@154
|
86 function_mu = 0;
|
ivan@154
|
87 if (params.mu == 0)
|
ivan@154
|
88 adaptive_mu = 1;
|
ivan@154
|
89 else
|
ivan@154
|
90 adaptive_mu = 0;
|
ivan@154
|
91 end;
|
ivan@154
|
92 elseif (isa(params.mu,'function_handle'))
|
ivan@154
|
93 function_mu = 1;
|
ivan@154
|
94 end;
|
ivan@154
|
95
|
ivan@154
|
96 %% Help variables
|
ivan@154
|
97 complementary_Xi = ones(N,1);
|
ivan@154
|
98
|
ivan@154
|
99 i = 1;
|
ivan@154
|
100 %% 0-ALPS(#)
|
ivan@154
|
101 while (i <= params.ALPSiters)
|
ivan@154
|
102 x_path(:,i) = x_cur;
|
ivan@154
|
103 x_prev = x_cur;
|
ivan@154
|
104
|
ivan@154
|
105 % Compute the residual
|
ivan@154
|
106 if (i == 1)
|
ivan@154
|
107 res = y;
|
ivan@154
|
108 else
|
ivan@154
|
109 Phi_x_cur = Phi(:,X_i)*x_cur(X_i);
|
ivan@154
|
110 res = y - Phi_x_cur;
|
ivan@154
|
111 end;
|
ivan@154
|
112
|
ivan@154
|
113 % Compute the derivative
|
ivan@154
|
114 der = Phi_t*res;
|
ivan@154
|
115
|
ivan@154
|
116 % Determine S_i set via eq. (11)
|
ivan@154
|
117 complementary_Xi(X_i) = 0;
|
ivan@154
|
118 [tmpArg, ind_der] = sort(abs(der).*complementary_Xi, 'descend');
|
ivan@154
|
119 complementary_Xi(X_i) = 1;
|
ivan@154
|
120 S_i = [X_i; ind_der(1:K)];
|
ivan@154
|
121
|
ivan@154
|
122 ider = der(S_i);
|
ivan@154
|
123 if (params.solveNewtonb == 1)
|
ivan@154
|
124 % Compute least squares solution of the system A*y = (A*A)x using CG
|
ivan@154
|
125 if (params.useCG == 1)
|
ivan@154
|
126 [b, tmpArg, tmpArg] = cgsolve(cg_A(S_i, S_i), cg_b(S_i), params.cg_tol, params.cg_maxiter, cg_verbose);
|
ivan@154
|
127 else
|
ivan@154
|
128 b = cg_A(S_i,S_i)\cg_b(S_i);
|
ivan@154
|
129 end;
|
ivan@154
|
130 else
|
ivan@154
|
131 % Step size selection via eq. (12) and eq. (13)
|
ivan@154
|
132 if (adaptive_mu)
|
ivan@154
|
133 Pder = Phi(:,S_i)*ider;
|
ivan@154
|
134 mu_bar = ider'*ider/(Pder'*Pder);
|
ivan@154
|
135 b = x_cur(S_i) + (mu_bar)*ider;
|
ivan@154
|
136 elseif (function_mu)
|
ivan@154
|
137 b = x_cur(S_i) + params.mu(i)*ider;
|
ivan@154
|
138 else
|
ivan@154
|
139 b = x_cur(S_i) + params.mu*ider;
|
ivan@154
|
140 end;
|
ivan@154
|
141 end;
|
ivan@154
|
142
|
ivan@154
|
143 % Hard-threshold b and compute X_{i+1}
|
ivan@154
|
144 [tmpArg, ind_b] = sort(abs(b), 'descend');
|
ivan@154
|
145 x_cur = zeros(N,1);
|
ivan@154
|
146 x_cur(S_i(ind_b(1:K))) = b(ind_b(1:K));
|
ivan@154
|
147 X_i = S_i(ind_b(1:K));
|
ivan@154
|
148
|
ivan@154
|
149 if (params.gradientDescentx == 1)
|
ivan@154
|
150 % Calculate gradient of estimated vector x_cur
|
ivan@154
|
151 Phi_x_cur = Phi(:,X_i)*x_cur(X_i);
|
ivan@154
|
152 res = y - Phi_x_cur;
|
ivan@154
|
153 der = Phi_t*res;
|
ivan@154
|
154 ider = der(X_i);
|
ivan@154
|
155
|
ivan@154
|
156 if (adaptive_mu)
|
ivan@154
|
157 Pder = Phi(:,X_i)*ider;
|
ivan@154
|
158 mu_bar = ider'*ider/(Pder'*Pder);
|
ivan@154
|
159 x_cur(X_i) = x_cur(X_i) + mu_bar*ider;
|
ivan@154
|
160 elseif (function_mu)
|
ivan@154
|
161 x_cur(X_i) = x_cur(X_i) + params.mu(i)*ider;
|
ivan@154
|
162 else x_cur(X_i) = x_cur(X_i) + params.mu*ider;
|
ivan@154
|
163 end;
|
ivan@154
|
164 elseif (params.solveNewtonx == 1)
|
ivan@154
|
165 % Similar to HTP
|
ivan@154
|
166 if (params.useCG == 1)
|
ivan@154
|
167 [v, tmpArg, tmpArg] = cgsolve(cg_A(X_i, X_i), cg_b(X_i), params.cg_tol, params.cg_maxiter, cg_verbose);
|
ivan@154
|
168 else
|
ivan@154
|
169 v = cg_A(X_i,X_i)\cg_b(X_i);
|
ivan@154
|
170 end;
|
ivan@154
|
171 x_cur(X_i) = v;
|
ivan@154
|
172 end;
|
ivan@154
|
173
|
ivan@154
|
174 % Test stopping criterion
|
ivan@154
|
175 if (i > 1) && (norm(x_cur - x_prev) < params.tol*norm(x_cur))
|
ivan@154
|
176 break;
|
ivan@154
|
177 end;
|
ivan@154
|
178 i = i + 1;
|
ivan@154
|
179
|
ivan@154
|
180 end;
|
ivan@154
|
181
|
ivan@154
|
182 x_hat = x_cur;
|
ivan@154
|
183 numiter = i;
|
ivan@154
|
184
|
ivan@154
|
185 if (i > params.ALPSiters)
|
ivan@154
|
186 x_path = x_path(:,1:numiter-1);
|
ivan@154
|
187 else
|
ivan@154
|
188 x_path = x_path(:,1:numiter);
|
ivan@154
|
189 end;
|